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Abstract

A large body of evidence has documented that risk preferences

depend nonlinearly on outcome probabilities. We discuss the foun-

dations and economic consequences of probability-dependent risk

preferences and offer a practitioner’s guide to understanding and

modeling probability dependence. We argue that probability depen-

dence provides a unifying framework for explaining many real-world

phenomena, such as the equity premium puzzle, the long-shot bias

in betting markets, and households’ underdiversification and their

willingness to buy small-scale insurance at exorbitant prices. Recent

findings indicate that probability dependence is not just a feature of

laboratory data, but is indeed manifest in financial, insurance, and

betting markets. The neglect of probability dependence may prevent

researchers from understanding and predicting important phenomena.
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“I believe, indeed, that probability nonlinearity will eventually be recognized

as a more important determinant of risk attitudes than money nonlinearity.”

(Prelec 2000, p. 89)

1. INTRODUCTION

Every day people make decisions with uncertain consequences. These decisions are often

quite trivial, such as when to leave for work. Sometimes they have long-term effects on

people’s well-being, such as whom to marry or which investment strategy to pursue. In

economics, a decision maker’s choices among different options are conventionally modeled

in the following way: The utilities of the potential consequences of each option are assessed

and weighted by the probabilities with which the respective consequences materialize.

The sum of the weighted utilities, an option’s expected utility, determines the value of

the option. Hence probabilities affect valuation linearly. Ultimately, the decision maker

chooses the option with the highest expected utility. There is abundant evidence, however,

that expected utility theory (EUT) is at odds with the facts: People’s risk-taking behavior

appears to depend nonlinearly on the probabilities.

To illustrate why the assumption of linearity in probabilities is counterfactual, we take a

closer look at a famous example, introduced by Allais (1953): Imagine an individual were

to choose between 1 million dollars for certain and 5 million dollars materializing with a

probability of 98%. Most people choose the certain option of 1 million dollars. In the

language of EUT, 1 u(1) is greater than 0.98 u(5), where u(!) denotes the utility of money.

Mathematically, this inequality also holds when both sides are multiplied by a positive

constant. For example, scaling down the probabilities by a common factor should not

affect the inequality and hence should leave the ranking of the alternatives intact. Now

consider the choice between a 1% chance of receiving 1 million dollars and a 0.98%

chance of receiving 5 million dollars. In this case, the majority of decision makers opt

for the 5-million-dollar alternative. Scaling down the probabilities of 100% and 98% by

0.01 induces many people to reverse their choices; i.e., in terms of EUT, 0.01 u(1) is now
less than 0.0098 u(5). This behavior is obviously inconsistent with EUT. Instead, people

behave as if the probabilities themselves affect the values of 1 million and 5 million dollars.

Some authors have argued that EUT is often violated because it does not capture all the

necessary ingredients of the utility function—for example, it ignores hopes and fears

associated with risky situations. An intuitive explanation for Allais’ common ratio paradox

is the fear of disappointment: Losing a gamble over an almost-certain 5 million dollars is

anticipated to be much more disappointing than losing a gamble over 5 million dollars that

has only a tiny chance of materializing in the first place. Therefore, people stick with the

certain smaller amount in the first situation and favor the option promising the larger

amount in the second situation. Thus, if people fear disappointment, their preferences are

effectively probability dependent. A large body of experimental research has accumulated

since Allais challenged the descriptive validity of EUT more than half a century ago (for

reviews, see Starmer 2000 and Sugden 2004), and the Allais paradox has been replicated

numerous times with various rewards: hypothetical and real, as well as small and large

(Hagen 1979; Kahneman & Tversky 1979; MacCrimmon & Larsson 1979; Battalio et al.

1985, 1990; Conlisk 1989; Kagel et al. 1990).

The probability dependence of risk preferences not only is evident in specifically struc-

tured choice problems, but also appears to be a general characteristic of behavior. That risk
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preferences are actually probability dependent can be established in a completely model-

free way, as we show in Section 2. We discuss models of probability-dependent risk pref-

erences that are tractable and useful for applied economics in Section 3. Section 4 is

dedicated to important issues encountered in empirical work. In Section 5, we demonstrate

that probability dependence is not just a robust feature of subjects’ behavior in the labora-

tory but appears to be present in financial, insurance, and betting markets. We argue that

probability dependence provides a unifying account of many real-world facts that are

difficult to reconcile within the framework of EUT, such as the equity premium puzzle,

the long-shot bias in betting markets, and households’ underdiversification and their will-

ingness to buy small-scale insurance at exorbitant prices. Our goal is to provide a practi-

tioners’ guide to understanding probability-dependent risk preferences.

2. THE FAMOUS INVERSE S

For simplicity, here we consider decisions under risk, i.e., situations in which probabilities

are known to the decision maker. We show that the raw data on observed risk-taking

behavior indicate that risk preferences are probability dependent in these situations, which

contradicts EUT.

A decision maker’s risk preferences can be assessed by eliciting her certainty equivalents

for risky prospects. A prospect P ¼ (x1, p1; . . .; xn, pn) is a contract that yields outcome

xi with probability pi, where probabilities sum to 1. A prospect’s certainty equivalent

is defined as the certain amount of money that is as valuable as the prospect. If the

certainty equivalent is lower (equal, higher) than the expected value of the prospect, the

decision maker is risk averse (risk neutral, risk seeking). The sign of the risk premium,

the difference between the expected value and the certainty equivalent, therefore reflects

risk preference. If the decision maker’s preferences conform to EUT, the sign of the risk

premium depends solely on the curvature of the utility function and thus is independent

of probabilities.

In the following, we present two different sets of data on risk-taking behavior. The first

is a subset of the data elicited from students of two major Swiss universities in 2006

(Bruhin et al. 2010). The second comes from a recent online experiment with a representa-

tive sample of the Swiss German-speaking, adult population (Epper et al. 2011b). Both

experiments were based on similar experimental procedures designed to elicit certainty equiv-

alents for a large number of two-outcome gain prospects P¼ (x1, p; x2) with x1> x2$ 0. The

prospects were not selected to specifically test for common ratio violations but constituted

a balanced mix of different levels of probabilities combined with different levels of payoffs.

Figure 1a,b (see color insert) represents the observed median relative risk premiums,

i.e., risk premiums normalized by the prospects’ expected values, plotted against the proba-

bility of the prospects’ best outcomes, p. Contrary to the predictions of EUT and consistent

with a vast number of previous findings (e.g., reviewed in Starmer 2000), observed relative

risk premiums exhibit a systematic pattern in both data sets: People are on average risk

seeking for small probabilities and risk averse for medium and large probabilities of the

best payoff x1. The probability dependence of risk preferences can thus be established in a

completely model-free way, without any prior theoretical assumptions. Any descriptively

valid theory of risk-taking behavior must therefore be able to capture this phenomenon.

Given this regularity, what are the requirements for such a descriptively valid model?

Obviously, a utility function with convex and concave segments, such as that proposed by
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Friedman & Savage (1948), will not do the job because the probability dependence of risk

preferences is observed at many payoff levels. One straightforward way to capture proba-

bility dependence (discussed in detail in Section 3.1) is to model it directly by a probability

weighting function w(p). If the utility of money is concave, risk seeking can emerge only

if small probabilities are sufficiently overweighted. Overall, the experimental evidence is

consistent with a probability weighting function that exhibits an inverse S-shaped form,

first concave, cutting the diagonal from above, and then convex. And indeed, this is the

shape estimated from our student and representative data (Figure 1c,d).

An inverse S-shaped weighting function generally fits aggregate experimental data well

(see the summary in Stott 2006). At the level of individual behavior, however, we find

considerable heterogeneity, the most common shapes being inverse S and convex curves

(Tversky & Kahneman 1992, Gonzalez & Wu 1999, van de Kuilen & Wakker 2011).

Two distinct characteristics usually describe the shape of the probability weighting func-

tion, namely curvature and elevation. Curvature essentially captures the departure from

the diagonal (i.e., from linear weighting), whereas elevation expresses the relative degree

of optimism. The more elevated the curve, the comparatively more optimistic the decision

maker is with respect to gains.

3. THEORIES OF PROBABILITY-DEPENDENT RISK PREFERENCES

The literature on alternatives to EUToffers a wide range of modeling options—numbering

well into double figures—and the debate remains ongoing. So how can one choose among

them? We sift through the options on the basis of some general and more specific criteria.

We presume that, in general, economists are reluctant to dispense with the basic proper-

ties of completeness, continuity, transitivity, and monotonicity (with respect to first-order

stochastic dominance). We sympathize with this view, not because we think that individual

behavior always conforms to all these principles, but because we are convinced that

applied work needs mathematically tractable models. This choice comes at a cost: The

models presented below may not be able to describe individuals’ behaviors in every con-

ceivable decision situation. However, a useful model should be able to capture the essential

characteristics of risk preferences, our second requirement.

As the discussion in Section 5 demonstrates, many real-world phenomena regarding

insurance decisions and asset returns (Epstein & Zin 2001) are not compatible with

risk neutrality over small risks. Segal & Spivak (1990) call this sensitivity to small risks

“first-order risk aversion,” whereas approximate risk neutrality over small risks is termed

“second-order risk aversion.” As first-order risk aversion has turned out to be a crucial

characteristic of people’s behavior, it is an indispensable model desideratum. Second-order

risk aversion, however, applies to many alternatives of EUT, and this criterion therefore

reduces the set of eligible models considerably.

Finally, we require that the model accommodate the most frequently observed viola-

tions of EUT that triggered the search for alternatives in the first place. Three types of

regularities in human behavior drove the development of new models: the actuarially

unfair terms on which many people simultaneously gamble and insure (Sugden 2004),

common ratio effects, and common consequence effects (the latter two pointed out in

Allais 1953). The example discussed in Section 1 belongs to the category of common ratio

effects. Common consequence effects are observed when the ranking of two prospects

reverses after a common consequence has been added to both prospects.

First-order risk
aversion: risk aversion
over small risks,
generated by
indifference curves in
the outcome space
that are kinked
(nondifferentiable)
at the certainty line

Second-order risk
aversion: risk aversion
over small risks
converging to
risk neutrality

Common ratio effect:
when scaling down
probabilities, the
original preference
for a low-outcome
option over a
high-outcome option
changes in favor
of the high-outcome
option; a violation
of independence

Common consequence
effect: when adding a
common consequence
to each of a pair of
prospects, the original
preference for one
of the options reverses
in favor of the other
option; a violation
of independence
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These desiderata, listed in Table 1, rule out a large number of nonexpected utility

models and reduce the list to two types of tractable models: rank-dependent models

(Quiggin 1982, Tversky & Kahneman 1992) on the one hand and models of disappoint-

ment aversion (Gul 1991) on the other.1

The most notable difference between these two model types is the way probability

dependence is accounted for. Rank-dependent models are silent on the sources of proba-

bility dependence and capture it directly with a probability weighting function, whereas a

specific type of reference dependence drives probability dependence in the disappointment-

aversion model.

3.1. Rank Dependence

There are two variants of rank-dependent models: rank-dependent utility and cumulative

prospect theory. Generally, outcomes are ranked according to desirability, and their proba-

bilities are replaced by decision weights. Decision weights are derived from the entire

probability distribution instead of from transforming each probability separately, in

contrast to the original version of prospect theory (Kahneman & Tversky 1979), which

violates first-order stochastic dominance. The intuition for the rank-dependent approach

is that two outcomes with the same probability need not have the same decision weight.

Typically, extreme outcomes are likely to be overweighted because of their salience,

whereas intermediate outcomes receive much less weight (Quiggin 1982, Diecidue &

Wakker 2001).2

Let P ¼ (x1, p1; . . .; xn, pn) denote a risky prospect yielding outcome xi with probability

pi where x1 $ . . . $ xn and
P

pi ¼ 1. u(x) is an increasing utility function over monetary

outcomes with u(0) ¼ 0. Let w(p) be an increasing probability weighting function with

w(0) ¼ 0 and w(1) ¼ 1. Decision weights pi are defined as

pi ¼
w(p1) for i ¼ 1,

w
Pi

k¼1pk
! "

%w
Pi%1

k¼1pk
! "

for 2 & i & n.

(

ð1Þ

Table 1 Model desiderata

Type Characteristic Justification

General Completeness, transitivity, continuity, monotonicity Tractability

Risk preference First-order risk aversion Empirical validity

Probability weighting Subproportionality, inverse S-shape Empirical validity

1Gul’s model belongs to the Chew-Dekel class of betweenness-respecting models (Dekel 1986, Chew 1989), not all
of which obey first-order risk aversion. Chew’s (1989) theory of semiweighted utility displays first-order risk aver-
sion. It encompasses Gul’s model as a special case but is, in our view, less tractable than that of Gul’s. Other models
that rely on an intuition similar to disappointment aversion (e.g., Loomes & Sugden 1986) do not entirely fulfill
our criteria.
2It is our impression that this feature of rank-dependent utility has often not been properly understood. For exam-
ple, an inverse S-shaped probability weighting function does not imply that all small probabilities are overweighted.
Whether a small probability is overweighted or underweighted depends on the rank of the outcome to which it
is attached.
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Clearly,
Pn

i pi ¼ 1. Then the prospect is evaluated according to

V Pð Þ ¼
Xn

i

piu xið Þ. ð2Þ

In this formulation of rank-dependent utility theory, the decision weight of the best

outcome x1 equals its weighted probability w(p1). In this sense, w(p) is a good-news

probability weighting function. The next best outcome’s decision weight amounts to

w(p1 þ p2) % w(p1), the first term being the weight attached to the probability of getting

x2 or better, the second term reflecting the weight of the probability of getting an outcome

better than x2, and so forth. Hence w is a transformation on cumulative probabilities.

An inverse S-shaped w(p) overweights the best outcomes if they have sufficiently

low probabilities and thereby may generate gambling behavior. If w(p) is convex,

more preferred outcomes are underweighted relative to less preferred ones, which

can be interpreted as a form of risk aversion (Yaari 1987). The way in which rank-

dependent prospect valuation transforms objectively given probabilities is discussed in

Section 3.6 where we introduce parameterized specifications for each of these catego-

ries of weighting functions.

Cumulative prospect theory constitutes a rank- and sign-dependent model in which

outcomes are classified as gains or losses with respect to an (exogenous) reference point.

Gains and losses are ranked according to absolute size and evaluated separately in a

rank-dependent way, in which both utility and decision weights may differ between

gains and losses.3 The loss probability weighting function is a bad-news probability trans-

formation; i.e., it maps the decision weight of the worst outcome. The total prospect

value equals the sum of the gain and loss components. We illustrate this procedure with a

simple example: Consider a prospect P ¼ (x1, p1; . . .; x4, p4), with x1 > x2 > 0 > x3 > x4
and the reference outcome zero. Thus x1 is the best positive outcome, and x4 is the

worst negative outcome. Decomposing the prospect into its gain and loss parts renders

Pþ ¼ (x1, p1; x2, p2; 0,1 % p1 % p2) and P% ¼ (x4, p4; x3, p3; 0,1 % p3 % p4). Denoting

the domain-specific utility and probability weighting functions as uþ, u%, wþ, w%, and

setting uþ(0) ¼ u%(0) ¼ 0, renders a total prospect value of

V(P) ¼ wþ(p1)½uþ(x1)% uþ(x2)+ þwþ(p1 þ p2)uþ(x2)

þw%(p4)½u%(x4)% u%(x3)+ þw%(p3 þ p4)u%(x3).

Our final requirement is the model’s ability to capture commonly observed regularities of

human risk-taking behavior, which imposes more structure on the probability weighting

function. As Prelec (1998) notes in his seminal paper, the empirical evidence overdeter-

mines the shape of the probability weighting function. Generally, an inverse S-shaped

function that cuts the diagonal from above does a very good job of accommodating the

simultaneous occurrence of gambling and insurance as well as common consequence vio-

lations. A characteristic independent of an inverse S-shape captures common ratio effects,

however. In this case, probability weights have to display subproportionality, defined

3Tversky & Kahneman (1992) argue that the utility function is concave for gains and convex for losses. The
empirical evidence by and large supports a (weak) concavity of the gain utility function. For losses, the evidence is
not so clear-cut (see, however, Abdellaoui 2000).
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as follows (Prelec 1998): The subproportionality of the probability weighting function

w(p) holds if 1 $ p > q > 0 and 0 < r < 1 imply the inequality

w(p)

w(q)
>

w(rp)

w(rq)
, ð3Þ

where p and q are probabilities and r is a scaling factor (or a probability). In par-

ticular, subproportionality implies w(rq) > w(r)w(q) for all r,q 2 (0,1). The inequality in

Equation 3 can be interpreted in the following way: Reconsider the typical Allais common

ratio situation in which the prospect with the smaller outcome is originally preferred

to the prospect with the larger outcome. The larger outcome tends to become more salient

in the scaled-down situation if the probability weights of scaled-down probabilities are

less distinguishable from each other than the weights of the original probabilities are.

Hence preference reversals may result. The certainty effect, a special case of the common

ratio effect for p ¼ 1, implies that a certain outcome is devalued disproportionately when

it becomes risky. Subproportionality can be displayed by inverse S-shaped and convex

probability weighting functions. Empirical tests of common ratio violations have usually

been confined to choice problems in which one of the options is a certain outcome.

Therefore, there is much stronger evidence to date of the certainty effect than of general

common ratio effects. For this reason, it is an open question whether subproportionality

is indeed exhibited over the entire probability interval. In any case, a subproportional

convex segment on [p,, 1] for some p, seems a desirable requirement. Overall, the

empirical evidence is consistent with an inverse S-shaped probability weighting function

that displays, at least partially, subproportionality.

3.2. Disappointment Aversion

Gul’s (1991) theory of disappointment aversion is perhaps the most elegant and intuitively

compelling solution of the Allais common ratio paradox. Gul proposes a functional form

for V(P) that includes EUT as a special case and is only one parameter richer. The basic

idea is that when uncertainty resolves, only one of the potential outcomes materializes,

which is perceived as disappointing or elating, depending on its magnitude. Gul proposes a

natural disappointment threshold, the prospect’s certainty equivalent. Its certainty equiva-

lent, by definition, is equally valuable as the prospect and corresponds to the price the

decision maker is willing to pay for the prospect. Formally, the valuation functional is

implicitly defined by decomposing the prospect P into an elation and a disappointment

component, whereby outcomes preferred to the certainty equivalent of P are assigned to

the elation component, and outcomes not preferred to the certainty equivalent are assigned

to the disappointment component. Denote the sum of all elation probabilities by q. All
elation probabilities are then normalized by q, all disappointment probabilities are nor-

malized by 1 % q, and each normalized component is evaluated with its expected utility.

Finally, the total prospect value is a weighted average of the values of the elation and

disappointment components, with the elation weight derived as

w qð Þ ¼ q

1þ 1% qð Þ!
. ð4Þ

The parameter ! > %1 captures the decision maker’s sensitivity toward disappointment.

! ¼ 0 implies expected utility, and ! > 0 is disappointment aversion. The greater ! is,

Subproportionality: a
critical property that a
probability weighting
function must satisfy
to accommodate
general common ratio
effects; equivalent to
increasing elasticity

Certainty effect: a
special case of the
common ratio
effect in which the
original low-outcome
option materializes
with certainty
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the greater is effective risk aversion. ! > 0 is also a measure of proneness to common

ratio violations. This model has a flavor similar to that of cumulative prospect theory,

but the reference point here, the certainty equivalent, is determined endogenously and

varies with the prospect under consideration.

Suppose that xi is an elating outcome and xj is a disappointing outcome for some i, j.
Their contributions to total prospect value are calculated as follows:

q

1þ 1% qð Þ!
pi
q
u xið Þ ¼ pi

1þ 1% qð Þ! u xið Þ

¼ ~w pið Þu xið Þ,

1% q

1þ 1% qð Þ!

0

@

1

A pj
1% q

u xj
# $

¼ 1þ !ð Þ
pj

1þ 1% qð Þ! u xj
# $

¼ 1þ !ð Þ~w pj
# $

u xj
# $

,

ð5Þ

where ~w(p) ¼ p

1þ (1% q)!
< p, for 0 & p < 1 and ! > 0, defines a prospect-specific

probability weighting function with the sum of elating probabilities q determined endoge-

nously.4 This function is linear in p and underweights each probability of a given prospect

by the constant factor
1

1þ (1% q)!
. Moreover, disappointing outcomes enter prospect

valuation with an additional factor 1 þ !, which overweights disappointing outcomes

relative to elating ones. Hence disappointment-aversion theory can be interpreted as a

variant of rank-dependent utility with only two ranks, comprising the respective elating

and disappointing outcomes, and prospect-specific decision weights.

Routledge & Zin (2010) recently proposed a generalized version of Gul’s model. They

introduce a second parameter that governs the location of the disappointment threshold.

Depending on the magnitude of this parameter, the set of disappointing outcomes is larger

or smaller than in the original model, thereby allowing the model to generate great aver-

sion to large risks.

3.3. Model Comparison

How closely rank-dependent utility and disappointment-aversion models are related can

be seen by studying two-outcome prospects P ¼ (x1, p; x2). In this case, the certainty

equivalent must lie strictly between the two outcomes, and hence the better outcome is

elating and the worse outcome is disappointing. In the weighting formula of Equation 4,

q reduces to the probability of the better outcome p. The resulting weighting function

w(p) ¼ p

1þ (1% p)!
is convex and subproportional for ! > 0, and

V(P) ¼ ~w(p)u(x1)þ (1þ !)~w(1% p)u(x2)

¼ w(p)u(x1)þ (1%w(p))u(x2).

Therefore, the predictions generated by a rank-dependent model with the probability

weighting function w are observationally equivalent to the predictions by Gul’s model

(Gul 1991, Wakker 2010), even though the underlying mechanisms producing probability

dependence are quite different. The models also share the characteristic that indifference

4Because a certainty can never be disappointing, ~w 1ð Þ ¼ 1.
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curves in the (x1, x2) space exhibit a kink at the diagonal, the certainty line, which is the

cause of first-order risk aversion.

The best way of seeing the difference between the models is to inspect their indifference

curves in the unit probability triangle. This tool is constructed for a given set of three

outcomes x1 > x2 > x3. The probability of the worst outcome, p3, is assigned to the

horizontal axis of the triangle; the probability of the best outcome, p1, is assigned to

the vertical axis. Figure 2 (see color insert) shows typical indifference curves for rank-

dependent utility and disappointment aversion. As one can see, they differ substantially.

Rank-dependent models are characterized by nonlinear indifference curves, whereas dis-

appointment aversion is characterized by linear indifference curves with a specific pattern:

Indifference curves fan out in the bottom half and fan in in the top half. Because of the

linearity of indifference curves, disappointment-aversion preferences respect betweenness,

a weaker axiom than the independence axiom of EUT (EUT is characterized by linear

parallel indifference curves).

The most important difference between the models concerns the types of behaviors

they can map. Because rank-dependent utility allows many different forms of probability

weights, it can capture both global risk aversion (by a convex probability weighing

function) and a combination of risk seeking and risk aversion (by an inverse S) even when

the utility function is concave. Disappointment aversion with ! > 0 can accommodate

only global risk aversion in this case. Therefore, the utility function would have to be

convex in certain regions to be able to accommodate both risk-seeking and risk-averse

behavior. The differences between the models are summarized in Table 2.

3.4. Which Model Is Better?

This question can be approached from two different directions, empirical validity or trac-

tability. There is a huge literature testing underlying axioms, investigating indifference

curves in the unit probability triangle, and estimating all kinds of parameterized models.

Summarizing the experimental findings, most of which are based on student samples,

Starmer (2000) cites considerable evidence against linear indifference curves and sees

decision-weight models in the lead (see also Camerer & Ho 1994 and Loomes & Segal

1994). Indeed, inverse S-shaped probability functions fit generally well at the aggregate

level, at least for laboratory data.

Table 2 Differences in model characteristics

Characteristic Rank dependencea Disappointment aversionb

Accommodated risk behavior Risk seeking/aversion or

risk aversion

Risk aversion

Source of probability weighting Preference Endogenous reference point

Effect of probability weighting Overweighting both tails or

lower tail

Overweighting lower tail

Indifference curves in triangle Nonlinear Linear, mixed fanning

aAssuming concave utility and inverse S-shaped or convex probability weighting.
bAssuming concave utility and disappointment aversion ! > 0.

Fanning out: risk
aversion increases
or remains constant
when shifting
probability from
the lower to the
higher outcomes
(stochastic dominance)

Betweenness: a
weakened form of
independence
requiring that the
probability mixture
of two prospects
lies between them
in preference

Independence: if
prospect A is preferred
to prospect B, then a
probability mixture
of Awith a third
prospect C is also
preferred to a
probability mixture of
B with C. This implies
that the preference
functional is linear
in probabilities
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From a pragmatic point of view, the question should be, what type of behavior is the

model supposed to map? Relative risk premiums such as in Figure 1 are better described

by a rank-dependent model with inverse S-shaped probability weighting. Disappointment

aversion may be a good candidate for modeling situations of global risk aversion, such as

investor behavior in financial markets or insurance choices. In any case, we are not aware

of systematic tests of one model against the other in real-world circumstances that call for

modeling of global risk aversion.

From the viewpoint of tractability, however, there is much to be said in favor of

disappointment aversion. As Backus et al. (2005) explicate in their article “Exotic Pref-

erences for Macroeconomists,” the disappointment-aversion model can be easily used

in econometric work by applying method-of-moments estimators directly to first-order

conditions. First-order conditions for rank-dependent utility are no longer linear in prob-

abilities and make estimation much more complex. Moreover, replacing the indepen-

dence axiom with its weaker cousin, betweenness, has some theoretical appeal because

betweenness amounts to preferences being both (weakly) quasi-convex and quasi-

concave, properties economists know how to work with. Many results in game theory,

auction theory, macroeconomics, and dynamic choice do not require full-fledged inde-

pendence but only betweenness or quasi-concavity (Crawford 1990, Camerer & Ho

1994, Starmer 2000). But of course, all these nice results are of no use if preferences are

effectively nonlinear.

3.5. A Note on Loss Aversion

Probably the most prominent feature of prospect theory is loss aversion, the presumption

that “losses loom larger than gains” (Kahneman & Tversky 1979, p. 279). The concept of

loss aversion only makes sense when there is a reference point that distinguishes losses

from gains. The reference point with respect to which gains and losses are defined has

traditionally been assumed to be an exogenously fixed certain outcome (e.g., the status

quo), but recent developments consider endogenously determined and stochastic specifica-

tions (Sugden 2003, Gul & Pesendorfer 2006, Köszegi & Rabin 2007, De Giorgi &

Post 2011). In their cumulative prospect theory, Tversky & Kahneman (1992) propose a

parametric specification of loss aversion with respect to a fixed outcome that has since

become the gold standard of many estimates of prospect theory parameters and calibra-

tions.5 In our experience, however, there seems to be a lot of confusion about loss aversion. It

is important to understand that, in the context of risky choice, loss aversion kicks in only

when prospects are mixed, containing both gains and losses, i.e., when the reference point lies

strictly between the prospect’s best and worst outcome. Loss aversion does not affect pure

gain and loss prospects, for which there is no “internal” reference point (Köbberling &

Wakker 2005).

5Since the publication of Tversky & Kahneman (1992), any estimates of loss aversion that deviate significantly
from the value of two have been eyed with great suspicion, notwithstanding the fact that the original estimate
was based on 25 subjects’ hypothetical decisions over relatively large stakes and that no standard errors were
reported (see also Wakker 2010, p. 265). Moreover, their original definition of loss aversion, u(%x2) % u(%x1) >
u(x1) % u(x2) for x1 > x2 $ 0 (Kahneman & Tversky 1979, p. 279), is consistent with a utility kink at zero
but does not imply one. The parameterization of loss aversion in their 1992 paper, however, assumes a kinked
utility function.
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Assume that xj is a loss within a mixed prospect. Its weighted utility in cumula-

tive prospect theory is conventionally modeled as (suppressing the superscripts for

the loss domain)

lpju(xj), ð6Þ

where l > 1 is the index of loss aversion, which is applied to all loss outcomes within a

mixed prospect.

A prospect’s certainty equivalent determines the reference point endogenously in Gul’s

theory. As the certainty equivalent always lies between the best and the worst outcome,

all prospects are mixed by definition. Recall from Equation 5 that all disappointing out-

comes are weighted by the factor 1 þ !, with ! > 0:

(1þ !)~w(pj)u(xj). ð7Þ

Disappointment aversion thus seems to fulfill a function similar to that of loss aversion

in prospect theory. Loss aversion produces a kink in the utility function and hence gen-

erates first-order risk aversion about the reference point. Loosely speaking, loss aversion

predicts large risk aversion in the vicinity of the (fixed) reference point (for mixed pros-

pects) and much less elsewhere (for nonmixed prospects), whereas disappointment aver-

sion predicts the same risk aversion everywhere (because all prospects are mixed).6

Pronounced differences in risk aversion over distinct sets of prospects therefore suggest

the existence of a fixed reference point. We are not aware of any systematic investigations

of this issue, however.

3.6. Parametric Forms for the Probability Weighting Function

Probability weighting functions have to be specified in addition to the utility function for

parameterized estimation of rank-dependent models. In the literature, a host of different

functional forms have been proposed for modeling probability weights (see, e.g., Stott

2006). When deciding on functional forms, the researcher should first thoroughly analyze

the raw data or estimate probability weights nonparametrically to get a feel for the data.

We also performed this exercise for the illustrative examples presented in Section 2. The

nonparametric estimates for our student and representative samples are shown in Figure 1.

As expected, their confidence bars by and large lie within the confidence bands of the

fitted probability weighting curves. In the following, we focus on the most commonly used

specifications of one- and two-parameter versions with their usual parameter restrictions.

3.6.1. One-parameter specifications. One-parameter specifications may be favored for

aggregate data for reasons of parsimony. In our view, however, one-parameter functions

are often not flexible enough to catch the essential features of the data.

Power. This functional form has attracted much attention:

w(p) ¼ pg, ð8Þ

6In prospect theory specifications, mixed prospects are necessary but not sufficient to identify the parameter of loss
aversion. It takes both mixed and nonmixed prospects unless one imposes restrictions on other model parameters.
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with g > 1. However, its popularity is a mystery to us, as it is neither subproportional

anywhere, which would be necessary to capture general common ratio violations, nor can

it accommodate the special case of the certainty effect, which in our view is a minimum

requirement. To see this, note that
w(1)

w(p)
¼ 1g

pg
¼ rg

(rp)g
¼ w(r)

w(rp)
.

Gul. If one needs a convex function that can accommodate common ratio violations, the

specification implied by Gul’s (1991) model is an appropriate choice as it is subpropor-

tional everywhere:

w pð Þ ¼ p

1þ 1% pð Þ! , ð9Þ

with ! > 0. Another example of a convex subproportional specification can be found in

Rachlin et al. (1991).

Tversky-Kahneman. This function is inverse S-shaped and has become extremely popular:

w pð Þ ¼ pg

pg þ 1% pð Þgð Þ1=g
, ð10Þ

with 0.279 < g < 1 (Tversky & Kahneman 1992). In fact, many authors identify cumula-

tive prospect theory with this functional specification (and Tversky & Kahneman’s point

estimates). There are several potential drawbacks with it, however. First, it is not mono-

tonic for g < 0.279 (Ingersoll 2008), and the parameter value should therefore always

be restricted to be at least 0.279. Second, the elevation and intersection of the curve

with the diagonal are not independent from one another: Stronger probability distor-

tions (smaller g) are associated with lower points of intersection with the diagonal,

where w(p) ¼ p. This feature produces an artificial negative correlation of the measure

of nonlinearity g with the curvature parameter of the utility function because a lower

elevation of the probability weighting curve captures a characteristic of risk preferences

similar to a more strongly concave utility function. Third, it is not subproportional for

small p, which may not hurt much because it accommodates common ratio violations in

the relevant range.

Karmarkar. This inverse S-shaped function intersects the diagonal at p ¼ 0.5 and therefore

does not produce a correlation with utility curvature:

w(p) ¼ pg

pg þ (1% p)g
, ð11Þ

with 0 < g < 1 (Karmarkar 1979). It is not subproportional for small values of p.

Prelec-I. This function has axiomatic foundations and was designed to map common

ratio effects:

w(p) ¼ exp(%ð%ln(p))a), ð12Þ

with 0 < a < 1 (Prelec 1998). Its parameter a is an index of subproportionality. a ¼ 1

captures the limiting case of linearity. The curve features a fixed intersection point at

p ¼ 1=e, which seemed to characterize most experimental findings at the time of its

578 Fehr-Duda " Epper

A
nn

u.
 R

ev
. E

co
n.

 2
01

2.
4:

56
7-

59
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
by

 1
78

.1
93

.5
.1

41
 o

n 
01

/0
5/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



inception. In our data, this intersection is sometimes closer to 0.5 than to 0.37, however

(see Figure 1d).

3.6.2. Two-parameter specifications. Because of the great heterogeneity in individual

behavior, two-parameter functions are generally recommended when modeling individuals’

risk preferences.

Goldstein-Einhorn. This is Karmarkar’s big brother, also known as the linear-in-log-odds

weighting function:7

w(p) ¼ dpg

dpg þ (1% p)g
, ð13Þ

with 0 < g < 1 and d> 0 (Goldstein & Einhorn 1987). The additional parameter d governs
the point of intersection with the diagonal and is therefore largely responsible for the

elevation of the curve, whereas g governs departure from linearity. The function is not

subproportional for small p.

Prelec-II. This specification is the multitalented extension of Prelec-I:

w(p) ¼ exp(%b(%ln(p))a), ð14Þ

with 0 < a < 1 and b > 0. The parameter a captures subproportionality, and b is a net

index of convexity. Increasing b increases the convexity of the function without affecting

subproportionality and shifts the point of intersection with the diagonal downward. It

collapses to the simple power function with parameter b in the limiting case of a ¼ 1. In

our experience, Prelec-II and Goldstein-Einhorn fit about equally well (see also Gonzalez &

Wu 1999).

Coming back to our two illustrative data sets, we present parameter estimates for

Prelec-II and the usual isoelastic utility specification u(x) ¼ xm. Maximum likelihood

parameter estimates are displayed in Table 3. Note that we show estimates for 1 % m,
1 % a, and 1 % b because departures from linearity can be directly tested. Evidently,

there are significant differences between the estimates for the student sample and the

representative sample. First, the students’ utility function does not depart significantly

from linearity, whereas that of the representative study does. Second, the representative

probability weighting curve is more strongly S-shaped (representative a ¼ 0.423 versus

student a ¼ 0.513) and cuts the diagonal at a higher level of probability (representative

b ¼ 0.868 versus student b ¼ 0.958). The corresponding graphs are presented in

Figure 1. What do these differences predict with regard to risk-taking behavior over more

complex gambles? This is the issue we address next.

Rank dependence becomes particularly interesting when there are more than two out-

comes. The characteristics of the probability weighting function, inverse S or convex,

determine the effects of rank dependence on the decision weights of the outcome utilities.

Figure 3 (see color insert) shows how Prelec-II and Goldstein-Einhorn affect decision

weights for a uniform discrete probability distribution of 21 outcomes ranked by mag-

nitude. When there are more than two outcomes, a general feature of inverse S-shaped

7Gonzalez & Wu (1999) derive a necessary and sufficient preference condition for two-outcome prospects in a
rank-dependent representation.
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probability weighting curves in rank-dependent models is that both tails of the distribu-

tion are overweighted while the intermediate outcomes are underweighted, which cap-

tures the intuition that extreme outcomes are more salient to the decision maker. The

one-parameter versions (b ¼ d ¼ 1) with an index of nonlinearity of a ¼ g ¼ 0.9 show

the slight skewness preference of Prelec-I due to its asymmetrical intersection with

the diagonal, while Karmarkar is perfectly symmetrical. When nonlinearity is increased,

decision weights diverge more dramatically from uniform probabilities. Finally, moving

elevation d or convexity b away from unity affects skewness.

The estimates for our student and representative samples indicate that the departure

from linearity is stronger and convexity is weaker in the representative sample. These

differences suggest that the general population exhibits a comparatively greater over-

weighting of a prospect’s best outcome and is therefore likely to be more susceptible to

buying lottery tickets than students are.

Figure 3c shows the effect of a convex subproportional function in rank-dependent

specifications, which overweights the lower tail of the distribution at the expense of its

upper tail, which is also a principal characteristic of Gul’s disappointment model. Gul’s

model generates a somewhat different picture, however. Because there are only two ranks,

Table 3 Estimation results for rank-dependent utility

PE SE z p value

Student sample

1 % m 0.036 0.024 1.475 0.140

1 % a 0.487 0.041 11.793 0.000

1 % b 0.042 0.019 2.226 0.026

Subjects 118

Observations 2,106

Representative sample

1 % m 0.142 0.019 7.564 0.000

1 % a 0.577 0.017 33.537 0.000

1 % b 0.132 0.018 7.315 0.000

Subjects 308

Observations 5,976

The table lists rank-dependent utility parameter estimates for the student and representative data. Details of data and

estimation are explained in the Supplemental Appendix. PE denotes point estimates and SE their corresponding boot-

strap standard errors (based on 4,000 replications). Bootstrapping accounts for the panel structure of the data. The

parameters are specified to allow for direct tests of linearity. The parameter 1 % m is the relative Arrow-Pratt index of

the concavity of the utility function. 1 % a is an index of subproportionality, and 1 % b is an index of the concavity of

the probability weighting function (Prelec-II). The weighting function takes an inverse S-shaped form for 1 % a > 0,

whereas it becomes more concave for larger values of 1 % b. Point estimates reveal that the utility function is

approximately linear for students and concave for the representative sample. Both probability weighting functions have

an inverse S-shaped form. The p values indicate that linearity of probability weights is clearly rejected and that the

Prelec-I function (b ¼ 1) would be an inadequate choice here. The probability weighting functions, together with their

95% confidence bands, are plotted in Figure 1.
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equiprobable outcomes are assigned a constant weight depending on the outcomes being

disappointing or elating. Figure 4 (see color insert) shows decision weights for two different

levels of disappointment aversion, ! ¼ 1 and ! ¼ 2. The greater the disappointment param-

eter !, the more pronounced is the overweighting of the lower tail. The disappointment

threshold is determined endogenously by the certainty equivalent of the prospect under

consideration. In its generalized form, introduced by Routledge & Zin (2010), an additional

parameter moves the disappointment threshold away from the certainty equivalent.

4. EMPIRICAL ISSUES

4.1. Heterogeneity

There is overwhelming evidence of heterogeneity in individuals’ proneness to probability

distortions in the laboratory (Hey & Orme 1994, Gonzalez & Wu 1999), and it is also

evident in real-world behavior. Andrikogiannopoulou (2010) makes use of unique panel

data on individuals’ betting activities in an online sportsbook, comprising a wide range of

different sports, such as soccer, tennis, basketball, and darts. Pooled estimates of proba-

bility weighting parameters show a significant, but rather moderate departure from line-

arity of the inverse S-shaped variety. However, there is pronounced heterogeneity in

preference parameters at the individual level.

A parsimonious way of capturing heterogeneity is to estimate finite-mixture models,

which classify individuals according to risk-taking type. Bruhin et al. (2010) analyze three

different student data sets and find that a group of approximately 20% of their Swiss

and Chinese students barely depart from linear probability weighting. Moreover, their

average utility functions are close to linear as well, so by and large these people can be

characterized as expected value maximizers. For 80%, however, estimates show the typical

inverse S-shaped probability weighting. So at least in the student population there is a

nonnegligible percentage of people who seem not to be prone to probability weighting.

Let us consider Figure 5a (see color insert), which shows the estimated probability weight-

ing curves for the two different behavioral types found in our student data, presented in

Section 1. The curve of the minority group (type II) almost coincides with the diagonal,

whereas the majority (type I) exhibits the usual inverse S-shape.

Applying the mixture approach to our representative data set reveals a different pic-

ture: Figure 5b shows strongly inverse S curves that differ predominantly in elevation,

i.e., the degree of optimism. We do not find a well-defined group of expected utility maxi-

mizers even when searching for more than two types. It therefore appears that a continuity

of different degrees of probability distortions characterizes the general population.

Gamblers may constitute a specific subgroup of the population, however. Kumar (2009)

finds that people who purchase state lottery tickets belong to the same socioeconomic

group as those who buy predominantly lottery-type stocks, characterized by low prices,

high positive skewness, and high idiosyncratic volatility. In the United States, the most

frequent lottery players are poor, young, and relatively poorly educated young men who

live in urban areas and belong to specific ethnic minorities. We conjecture that this group

of people also exhibits strongly inverse S-shaped probability weighting curves. Pronounced

probability distortions would explain their preference for positively skewed stocks and

state lottery tickets because outlying large prizes are strongly overweighted in this case.

Andrikogiannopoulou’s (2010) analysis does not control for socioeconomic characteristics,
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but she confirms that sportsbook bettors who depart more pronouncedly from linearity

indeed engage in more strongly positively skewed bets. On average, online sportsbook

bettors display only a moderately curved probability weighting function, which suggests

that they are distinct from state lottery gamblers. Interestingly, her estimates of a mixture

model classify approximately 15%–20% of her sample as expected utility agents, which

lies close to the student percentage.

Although the favorite-long-shot bias in betting markets is one of the best documented

anomalies in the literature, some betting markets (such as those for football, basketball,

baseball, and hockey) are characterized by a reverse bias, with favorites being overbet

and long shots underbet. Sobel & Ryan (2008) conjecture that the mix of different betting

types (casual bettors, serious bettors, and arbitrageurs) is decisive for the direction of the

bias. Their main hypothesis is that the more complex the bet or the more uninformed the

bettors, the more likely the regular bias is to emerge.

One might ask whether professionals who are trained to deal with risk are less prone to

probability distortions. A recent experiment by List & Haigh (2005) finds that traders

from the Chicago Board of Trade exhibit Allais-type violations in simple choices, but to a

lesser degree than students do. Fox et al. (1996) analyze professional options traders’

valuations of risky prospects based on future values of various stocks, their area of exper-

tise, and report that valuations coincide with their expected values. This highly selective

group thus seems less vulnerable to probability distortions, which may result from training

and experience (or personal characteristics they have in the first place).

Finally, the vast majority of studies find women to be relatively more risk averse than

men are (Croson & Gneezy 2009). Fehr-Duda et al. (2006) and Booij et al. (2010) present

experimental evidence that women tend to weight probabilities more pessimistically than

do men, which explains their greater observed risk aversion.

The upshot of these findings is that there is substantial heterogeneity in proneness to

probability distortions. Estimated market weighting functions are not always inverse S-shaped

but sometimes exhibit the opposite pattern, which may result from changing compositions

of behavioral types in the market, among other factors. Therefore, clarifying the relation-

ship among market-specific heterogeneity, participation decisions, and market outcomes is

a challenging direction of future research (Chapman & Polkovnichenko 2009).

Heterogeneity has also an important implication for a much more mundane problem:

When calibration exercises are performed on the basis of parameters estimated from some

laboratory data, these estimates depend crucially on the types of people participating in

the experiment. These estimates may therefore be totally unfit for predicting behavior of

some other group of people, which is quite obvious when comparing our student results

with the representative ones.

4.2. Artifacts of the Measurement Procedure

There is no doubt that, at least to some extent, elicitation procedure has an effect on

measured risk preferences. The crucial question, however, is whether the effect leads to

wrong inferences on actual risk preferences. Recently, Harbaugh et al. (2010) present an

example of an apparent violation of procedure invariance: In their pricing task, they elicit

subjects’ willingness to pay for a small set of prospects and ask them to choose between the

same prospects and their expected values in a choice-based procedure. The authors find

probability-dependent risk preferences in the pricing task but close to risk-neutral behavior
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in the choice task. This result seems to run counter to conventional wisdom. Stott (2006)

reviews a large number of different studies that report parametric estimates of probability

weighting functions. By and large, the estimated aggregate curves deviate pronouncedly

from linearity, even though elicitation methods differed greatly. Analyzing 80 individuals’

choices over 100 pairs of three-outcome prospects, Hey & Orme (1994) identify rank-

dependent utility as the overall winner among a large number of contenders on the crite-

rion of average rankings.8 It thus seems that the choice-based method per se is not the

culprit for the failure of Harbaugh et al. to find probability-dependent risk preferences

in choices. In all likelihood, the set of prospects rather than the measurement procedure

is responsible for their result. Harbaugh et al. use prospects with one nonzero outcome

P ¼ (x, p).9 In our view, that people appear to be almost risk neutral when confronted

with the choice between a prospect of this type and its expected value is not surprising.

Because it is so obvious that expected value equals outcome times probability, people may

interpret the experiment as a test of their intelligence or numeracy rather than as a prefer-

ence elicitation task.10

Prospects with only one nonzero outcome have another serious disadvantage. Probability

weighting parameters cannot be disentangled from the utility curvature unless specific func-

tional forms are imposed. Such an approach is potentially misleading because the functional

form alone determines the estimates and not the characteristics of risk preferences. There-

fore, we strongly recommend using multi-outcome prospects, with more than one nonzero

outcome, over a wide range of probabilities to be able to generate a sufficiently rich data-

base. This may not always be feasible with field data, however, and the researcher therefore

must take data quality into account when deciding which model to use.

Another reason why violations of independence or probability weighting may not be

evident in people’s behavior is because of the selection of specific prospects for the experi-

mental task as well. Let us consider the probability triangle for rank-dependent utility in

Figure 6 (see color insert), which is obtained from the respective triangle in Figure 2 by

suppressing the border regions. Incidentally, these indifference curves are predicted for our

representative sample by the model estimates in Table 3. The indifference curves in this

truncated triangle look fairly linear, as if conforming with betweenness. Moreover, it will

be quite hard to distinguish them statistically from parallel ones, characterizing indiffer-

ence curves of the expected utility model. It has been known for more than two decades

that violations of EUT are much less frequent inside the probability triangle (e.g., Camerer

1992, Harless & Camerer 1994), but whenever prospects have different support (some lie

on the boundary, some in the interior), expected utility violations are pronounced. So if

subjects are confronted with choices between two off-border prospects, it is not sur-

prising when their behavior does not depart strongly from linearity. The strength of the

decision-weight models is that they predict exactly this pattern. Oversensitivity to extreme

probabilities is the reason why these models were devised in the first place, and cutting off

the domain over which they can prove their usefulness is counterproductive. So for prac-

tical purposes of estimation, we recommend including not only multi-outcome prospects,

8Their data set comprises two subsets of choices over identical 100 pairs at two different dates, but they still
consider these subsamples as “small” and the nature of their data “weak” (Hey & Orme 1994, p. 1311).
9The gain prospects are (20, 0.1), (20, 0.4), and (20, 0.8), and outcomes of otherwise identical loss prospects
are %20.
10For a similar argument in the context of money-splitting tasks, readers are referred to Camerer (2004).
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but also prospects with differing supports in the set of the experimental tasks. In sum-

mary, failure to find probability-dependent risk preferences may be a result of limitations

in the experimental design and should not be taken as evidence of nonexistence.

4.3. Stake and Delay Dependence of Probability Weights

A good model of risk preferences should be able to predict people’s behavior when circum-

stances change. This is the reason why it is so important that the model captures the essen-

tial characteristics of preferences. Is probability weighting a stable feature of behavior, or do

the proposed models overlook important driving forces? We offer two pieces of evidence

that may cause some concern.

The first finding is related to the well-known fact that relative risk aversion increases

with stake size (Holt & Laury 2005). This regularity is not in conflict with EUT, which is

silent on the existence and direction of stake effects. For instance, one could accommodate

increasing relative risk aversion with a flexible functional form, such as the expo-power

function proposed by Saha (1993). However, Fehr-Duda et al. (2010) show in the context

of a rank-dependent model that the probability weighting function, and not the utility

function, reacts to rising stakes. In an experiment with real rewards conducted in China,

they find a significant and substantial change in the elevation of the probability weighting

curve when stakes are increased from typical laboratory earnings to about a student’s

monthly income. Chinese subjects are characterized by a high degree of optimism over

small gains, which is greatly reduced when stakes are increased. This effect is consistent

with earlier findings by Kachelmeier & Shehata (1992). So far, we are not aware of any

other study with real high stakes that controls for probability weighting, and it is not

clear whether these results carry over to other populations. If significant stake dependence

were to emerge as a robust characteristic of probability weighting, we would have to recon-

sider the assumption of stable decision weights. Such a finding would imply a more compli-

cated interaction between utility and probabilities than that captured by the rank-dependent

model. Without more knowledge about stake dependence, a pragmatic solution would be

to avoid out-of-sample predictions when stakes differ significantly. Our finding of stake

dependence also touches on the issue of the sources of probability dependence. If probability

dependence is generated by reference-dependent preferences, the instability of the probability

weighting function may be an indication of shifting reference points.

The second finding concerns an even more fundamental issue. The traditional models

of decision under risk are atemporal by construction. The resolution of uncertainty, how-

ever, typically involves the passage of time. Citing Machina (1984, p. 199), “Indeed, it is

hard to think of any type of risk which does not involve the delayed resolution of

uncertainty, other than the somewhat artificial (and in any event, completely avoidable)

risks generated by some forms of gambling.” Recently, Abdellaoui et al. (2011) demon-

strate that probability weights for gains are delay sensitive, with longer delays resulting

in more elevated curves. In their experiment, only probability weights, and not the utility

of money, react to the delayed resolution of uncertainty. An increase in elevation thus

translates directly into increased risk tolerance, which is in line with a rising number of

experimental findings on delay-dependent risk tolerance.

Of course, there is no room for such an effect in atemporal preference models. How-

ever, Fehr-Duda & Epper (2011) explain the delay dependence of probability weights with

people’s perception of the future as intrinsically uncertain. They show that people with
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subproportional probability weights will effectively exhibit greater risk tolerance in this

case.11 So why do we find such pronounced risk aversion in real-world financial markets

in which people’s investments are presumably long term? The key to this puzzle is the

frequency with which prospects are evaluated until their uncertainty resolves fully at the

payment date.

To provide support for this claim, we ignore the passage of time for now and analyze

the valuation of prospects presented as compound gambles. Consider a two-outcome

prospect P ¼ (x1, p; x2), where uncertainty p resolves in two stages, p ¼ rq, as shown

on the left side of Figure 7. Single-stage resolution of uncertainty corresponds to the tree

on the right side. If a decision maker evaluates the compound prospect recursively, he

will come up with

V Pð Þ ¼ w qð Þ w rð Þu x1ð Þ þ 1%w rð Þð Þu x2ð Þ½ + þ 1%w qð Þð Þu x2ð Þ
¼ w qð Þw rð Þu x1ð Þ þ 1%w qð Þw rð Þð Þu x2ð Þ.

Subproportionality of the probability weighting function implies w(qr) > w(q)w(r) (see
Equation 3); therefore, the single-stage value is strictly greater than that obtained recur-

sively. Hence, when the decision maker evaluates a compound prospect recursively, he

will exhibit comparatively lower risk tolerance than in the one-shot case (for a discussion

of dynamic consistency in this context, see Fehr-Duda & Epper 2011).

This effect of recursive valuation becomes more pronounced with the number of stages.

To see this, let us consider Figure 8a (see color insert). m denotes the number of evaluation

stages, and here the curve for m ¼ 1 represents a typical subproportional probability

weighting function (Prelec-I, a ¼ 0.5) when outcomes are evaluated in a single stage. If

uncertainty resolves in two (equiprobable) stages rather than in one shot, the prospect is

effectively evaluated with the probability weighting curve m ¼ 2, which shows more

pronounced underweighting. At m ¼ 12, the curve looks extremely convex, implying

strong risk aversion. This results from w(p) ¼ w((p1=m)m) >> w((p1=m))m for any subpro-

portional weighting function w and m > 1.

So far we have abstracted from the passage of real time. Reintroducing time, and with

it inherent future uncertainty, renders the curves in Figure 8b. When uncertainty resolu-

tion is delayed by 12 months, the curve for m ¼ 1 is more elevated than the atemporal

curve in Figure 8a, which explains the greater risk tolerance for delayed prospects found

by Abdellaoui et al. (2011). Compounding weights semiannually or monthly looks less

dramatic than in the atemporal situation, but shows the same tendency toward convex

probability weighting, i.e., increasing risk aversion. Extreme risk aversion can thus result

from several different underlying mechanisms: loss aversion, disappointment aversion, and

Figure 7

Compound versus single-stage prospects.

11Another prediction is that people with subproportional preferences will exhibit hyperbolic discounting if they
view the future as uncertain (Halevy 2008). Evidence of a significant correlation between subproportionality and
the degree of hyperbolic discounting at the individual level can be found in Epper et al. (2011a).
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rank dependence with convex probability weighting or frequent compounding of originally

inverse S-shaped probability weights.

This insight has important implications for market behavior. Betting and gambling

markets are characterized by short time horizons and rapid resolution of uncertainty

(e.g., a horse race). We can therefore expect probability weighting functions to resemble

those estimated from laboratory data, for which uncertainty resolves almost immediately.

The situation is completely different in financial markets in which investments, with the

exception of assets with short maturities, are perceived to have long or indeterminate time

horizons. However, information on portfolio performance is easily accessible. If investors

take the fact that they will check stock market news frequently into account, they are

likely to display excessive risk aversion even when an inverse S-shaped probability weight-

ing function describes their atemporal preferences.12 Experimental evidence clearly con-

firms that high feedback frequency decreases risk tolerance (Gneezy & Potters 1997,

Bellemare et al. 2005) and that the effect is even greater for professional traders than for

students (Haigh & List 2005). This discussion uncovers another source of heterogeneity:

Investors may be differentially prone to frequent portfolio evaluation.

This section demonstrates that probability weights are stake and delay dependent. Stake

dependence potentially constitutes a serious challenge to rank-dependent models if it were

to emerge as a robust feature of behavior. Clearly, more data are needed here. Delay

dependence is particularly important because the majority of real-world decisions are both

risky and delayed. However, the framework presented in Fehr-Duda & Epper (2011) pro-

vides a link between the seemingly contradictory findings of inverse S-shaped probability

weighting for atemporal decisions and predominantly risk-averse behavior in the important

domains of finance and insurance. Moreover, their model generates clear and testable pre-

dictions for observed risk preferences, opening a new avenue for experimental research.

5. FIELD EVIDENCE

We now argue that probability dependence is able to explain real-world phenomena that

are hard to reconcile with EUT. We draw our examples from financial, insurance, and

betting markets that clearly meet this condition.

In finance, the characteristics of an asset’s return distribution are considered to be the

drivers of asset value. When people’s preferences are characterized by an inverse S-shaped

probability weighting function, they overweight both tails of the return distribution;

i.e., they put a comparatively large weight on the best and on the worst outcomes. If the

return distribution is positively skewed (i.e., if extreme positive returns are possible),

overweighting of the upper tail leads to a particularly favorable valuation of positively

skewed assets. Barberis & Huang (2008) show that agents characterized by such a pref-

erence find not only positively skewed portfolios attractive, but also positively skewed

individual assets as well, which in turn will be overpriced relative to the prediction of EUT

and will earn a smaller return than the risk-free rate. This prediction has already been put

to the test with broadly confirmatory results. Assets with positively skewed return distribu-

tions include, for example, IPO stocks, high-volatility stocks, and out-of-the-money options.

Green & Hwang (2012) show that IPO stocks predicted to be more positively skewed

12In a similar vein, Barberis et al. (2006) identify narrow framing as a potential cause of nonparticipation in the
stock market.
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indeed earn lower long-run average returns. Similarly, stocks with high idiosyncratic vola-

tility, which typically also have positively skewed return distributions, seem to be overpriced

as well (Ang et al. 2006, Boyer et al. 2010).

Two recent studies try to identify probability weighting directly in the prices of options

on the S&P500 index. Kliger & Levy (2009) estimate various models for the period

1986–1995 and conclude that models that allow for probability weighting fit much better

than EUT does. The second study, covering the period 1996–2008, also finds evidence

for nonlinear probability weighting using a nonparametric approach (Polkovnichenko &

Zhao 2009).

Another implication of probability weighting concerns the household underdiversi-

fication puzzle (Polkovnichenko 2005). If people concentrate their stock holdings on

positively skewed assets because of the prospect of becoming wealthy, they are likely to be

less diversified than standard theory predicts. Mitton & Vorkink (2007) provide empirical

support for this conjecture: Individuals who are less diversified indeed tend to hold stocks

with more positively skewed returns than those of the typical stock. Firms with more

volatile stock returns may even exploit their employees’ preference for positively skewed

assets: By granting employee stock options to rank-and-file employees, firms can effec-

tively reduce their total personnel cost. Consequently, riskier firms are more likely to have

a broad-based stock option plan. Spalt (2012) shows that firm volatility has significant

explanatory power for the presence of such plans and for the number of stock options

granted to nonexecutive employees.

The discussion above examines the effects of probability weighting on relative stock

prices, but one of the most important challenges for the discipline has been the perfor-

mance of the universe of stocks characterized by a high equity premium, i.e., the return

earned by stocks in excess of that earned by relatively risk-free government bonds. Plausible

levels of risk aversion in the context of expected utility cannot explain these high excess

returns, observed in the United States and in other industrialized countries (Mehra 2006).

The prevailing behavioral explanation for the equity premium puzzle has been myopic loss

aversion (Benartzi & Thaler 1995, Barberis et al. 2001). Myopic investors who closely

watch uncertainty resolve will experience losses more often than investors with a long

evaluation horizon because, over the longer term, gains will compensate losses and the

net effect is likely to be positive. In contrast, De Giorgi & Legg (2012) show that proba-

bility weighting can raise the equity premium considerably above the level predicted by

loss aversion alone. The intuition behind this result is that S-shaped probability weighting

leads to overweighting of a distribution’s tails. It thereby generates aversion to negatively

skewed stock returns, which characterize the overall market. Similarly, Routledge & Zin

(2010) present promising calibrations for the movement of the equity premium in the United

States on the basis of their generalized disappointment-aversion model, which also entails

probability dependence.

Regarding insurance decisions, several facts are at odds with EUT. Because a risk-

averse expected utility maximizer with a differentiable utility function is almost risk

neutral with respect to small risks, her major concern will be the expected value of

the prospect in these decision situations (Pratt 1964). Therefore, she will never buy full

insurance when there is so-called marginal loading, i.e., when the insurance premium is

greater than the expected loss: If all but the last unit are already insured, the decision

maker will consider this last unit almost by its expected value and will insure it only if

the insurance premium at the margin is actuarially fair. This prediction is counterfactual
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as people are willing to buy warranties for household appliances and other small-scale

insurance policies at exorbitant prices. One possible solution to this puzzle within EUT

is that the utility function has a kink at a given wealth level, which generates first-order

risk aversion about this wealth level. However, the phenomenon of the full purchase of

unfair insurance is observed at general wealth levels. Although one can posit many kink

points in the utility function, EUT does not seem to be a good modeling choice here

(Machina 2001). In contrast, rank-dependent preferences can exhibit first-order risk

aversion at general wealth levels.

Another example concerns households’ choices of deductibles. Many people prefer low

deductibles to high deductibles even when the low deductible costs many times more than

the expected value of the extra insurance (Sydnor 2010). Reminiscent of the equity pre-

mium puzzle, this kind of behavior implies extreme risk aversion when interpreted within

the framework of EUT. A more plausible explanation for this kind of widely observed

behavior is that people overweight the probability of damage, resulting in a high degree of

risk aversion over low-probability events. Barseghyan et al. (2010) test this hypothesis by

analyzing consumers’ deductible choices in auto and home insurance policies. Their sample

comprises 4,170 households that purchased new policies from a large US property and

casualty insurance company in 2005 or 2006. Estimates of a structural model allowing for

probability weighting and loss aversion suggest that probability weighting plays the most

important role in explaining observed deductible choices.13

Wakker et al. (1997) raise another issue by showing that customers intensely dislike

insurance policies involving a small probability that claims will not be honored, so-called

probabilistic insurance. Probability weighting can also accommodate the reluctance to buy

probabilistic insurance: If people overweight small probabilities, they demand a compen-

sation for taking on the additional risk of not being reimbursed. The amount of the

required compensation greatly exceeds its actuarial value in this case.

Gambling and betting behavior represents another real-world application of proba-

bility weighting. A famous paradox concerns the favorite-long-shot bias in horse race

and other betting markets, involving underbetting on favorites and overbetting on horses

with a small chance of winning (Jullien & Salanié 2000, Snowberg & Wolfers 2010).

Similarly, state lotteries featuring large jackpots to be won have become extremely popu-

lar. Cook & Clotfelter (1993) show that ticket sales are strongly correlated with the

size of the jackpot rolled over from previous weeks. Overweighting of small probabili-

ties can explain both phenomena, the favorite-long-shot bias and the attractiveness of

state lotteries.

Jullien & Salanié (2000) use British horsetrack data on win bets to fit a representative

model. They argue in favor of a cumulative prospect theory model that appears to provide

a better fit for the favorite-long-shot bias than expected utility does. Snowberg & Wolfers

(2010) provide estimates on the basis of 6.4 million horse race starts in the United States

from 1992 to 2001. By exploiting the prevalence of complex bets,14 they are able to

13An earlier study on purchases of insurance against the risk of telephone line trouble by Cicchetti & Dubin
(1994, p. 183) finds some evidence of probability distortions, but “not to any significant degree.” Their findings
have raised some controversy because Cicchetti & Dubin never asked whether buying insurance against such a
tiny risk at the cost of twice the expected loss is reasonable in the first place (Camerer 2000, Rabin & Thaler
2001). Grgeta (2003) argues that their low estimate of relative risk aversion is inconsistent with buying this
expensive insurance and concludes that their estimates should not be used in support of EUT.
14 For the wagering experts among our readers, these complex bets are exacta, quinella, and trifecta.
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discriminate between the competing models of convex utility and probability weighting,

which yield observationally equivalent predictions for simple win bets. Their results sug-

gest that probability weighting rather than convex utility drives the bias.

All these studies demonstrate that probability dependence is not just a robust feature of

laboratory data, but also provides a rationale for a host of puzzling real-world phenomena.

6. WHERE DO WE GO FROM HERE?

A large body of experimental evidence has challenged the descriptive validity of the

expected utility model. Two behavioral regularities have emerged: loss aversion and prob-

ability dependence. Probability dependence is the more fundamental of the two because it

is observed for all types of prospects: pure gain prospects as well as pure loss and mixed

prospects. In contrast, loss aversion is effective for mixed prospects only. It is our impres-

sion that probability-dependent risk preferences have not received as much attention as

loss aversion has, however. Despite the importance of probability dependence, surprisingly

little is known empirically about its drivers. Are emotional processes such as disappoint-

ment aversion (Gul 1991, Walther 2003), the psychophysics of perception (Tversky &

Kahneman 1992, Wakker 2010), or simply errors of judgment the ultimate cause of

nonlinear preferences? In an early experiment, MacCrimmon (1968) gives subjects the

opportunity to reconsider choices that violated various axioms of EUT. Although many

subjects readily admitted to having made a mistake in cases of violations of transitivity,

they were not willing to change their choices that violated the independence axiom,

which guarantees linearity in probabilities. In fact, they did not even accept the validity

of the independence axiom in discussions with the experimenter [see also the experiment

by Slovic & Tversky (1974)]. It seems that probability dependence is a deeply rooted

characteristic of preferences and not a manifestation of erroneous prospect valuation.

Whatever the mechanism behind probability dependence, some kind of reference depen-

dence seems to play a role: A prospect’s certainty equivalent in the case of disappointment

aversion and the boundaries of the probability scale in the case of diminishing sensitivity are

possible examples. If reference dependence is the ultimate source of probability weighting,

what is the correct reference point? Is it an exogenous point, or does it emerge endoge-

nously? If risk preferences are a fairly stable individual characteristic, the instability of

behavioral parameters may be an indication of shifting reference points. So how do reference

points evolve? These issues are also crucial in loss aversion, which raises the question of

whether probability dependence and loss aversion are more closely related than previously

acknowledged. Dissatisfaction with prospect theory, which does not explain reference-point

formation, has recently triggered the development of new models of reference-dependent

preferences. We expect these new concepts to help clarify the relative roles of loss aversion

and probability dependence in revealed risk-taking behavior.

Another issue to be resolved concerns heterogeneity. We should gain a better under-

standing of market-specific heterogeneity—we need to identify the mix of different types of

agents and the evolution of heterogeneity over time. For this purpose, extensive panel data

on the broad population are required, data that are rich enough to disentangle utility and

probability weighting parameters.

Finally, the atemporal nature of the existing theories must be reconsidered. Accumu-

lating evidence of delay-dependent risk-taking behavior, which is likely attributable to

delay-dependent probability weighting, questions the assumption of the separability of risk
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and delay. Modeling interactions of risk and delay is an active area of current research

that opens up a new direction for empirical research.

Decision research has filled a treasure chest with theories and evidence for over half a

century. It is time for the chest’s contents to be put to good use, and for new research to

build on the knowledge accumulated so far. A lot of work is still to be done, however,

despite the abundance of available insights.
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Figure 1

Aggregate relative risk premiums and probability weighting functions. (a,b) The median relative risk premiums rrp observed in our
(a) student and (b) representative data. The raw data reveal that people are risk seeking for low-probability gains (rrp < 0) and risk
averse for medium- and high-probability gains (rrp > 0). (c,d) The estimated probability weighting functions (red solid curves) and
their 95% confidence bands derived by the bootstrap method in our (c) student and (b) representative data (4,000 replications,
accounting for the panel structure of the data; dashed curves), using the Prelec-II specification. We also employed a nonparametric
method to estimate probability weights. The green circles and their confidence bars demonstrate that our parametric model
captures the probability dependence of risk attitudes quite well. Details of the estimation procedure are explained in the Supple-
mental Appendix (follow the Supplemental Material link from the Annual Reviews home page at http://www.annualreviews.org).
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Rank–dependent utility

0
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p 1

p
3

Increasing preference

Disappointment aversion

0

1

p 1

p3

Increasing preference

1 1

a b

Figure 2

Unit probability triangles. The panels juxtapose the indifference curves in the unit probability triangle
predicted (a) by rank-dependent utility theory and (b) by Gul’s disappointment-aversion theory.
Each curve represents the combination of probabilities (p3,1 % p1 % p3, p1) that yields a constant level
of prospect utility for a fixed set of outcomes x1 > x2 > x3. Independence requires indifference curves
to be parallel straight lines. Rank-dependent utility features nonlinear indifference curves, whereas
disappointment aversion features fanning out (risk aversion increases in the direction of increasing
preference; red lines) in the lower regions of the triangle and fanning in (risk aversion decreases in
the direction of increasing preference; blue lines) in the upper regions of the triangle. Preferences for
rank-dependent utility are quasi-concave or quasi-convex depending on the region, whereas they
conform to betweenness for disappointment aversion. We used an inverse S-shaped probability
weighting function (Prelec-II) together with the parameter estimates presented in Table 3 to construct
the indifference curves for rank-dependent utility.
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Figure 3

Decision weights in rank-dependent models, showing the effects of rank dependence on the decision weights p(p) for a discrete
uniform probability distribution p of 21 outcomes ranked i (black crosses), depending on the characteristics of the probability
weighting function. The one-parameter versions (b ¼ d ¼ 1) with an index of nonlinearity of a ¼ g ¼ 0.9 are denoted by the red
triangles. When nonlinearity is increased, decision weights diverge more dramatically from uniform probabilities, shown by the
blue dots. Moving elevation d or convexity b away from unity affects skewness, noted by the green squares. Inverse S-shaped
probability transformations, Prelec and Goldstein-Einhorn, lead to a systematic overweighting of both tails of the distribu-
tion. Globally convex transformations of probabilities lead to an overweighting of the lower tail at the expense of the upper
tail. Contrary to the Karmarkar weighting function (Goldstein-Einhorn with d ¼ 1), Prelec-I (Prelec-II with b ¼ 1) predicts an
asymmetric redistribution of weights. Two-parameter specifications of these probability weighting functions overweight both
tails, whereby one of the tails may be overweighted comparatively more strongly.

www.annualreviews.org " Probability and Risk C-3

A
nn

u.
 R

ev
. E

co
n.

 2
01

2.
4:

56
7-

59
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
by

 1
78

.1
93

.5
.1

41
 o

n 
01

/0
5/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



0.
00

0.
03

0.
06

0.
09

0.
12

Outcome by magnitude
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Figure 4

Decision weights in Gul’s model, revealing the basic difference between rank-dependent utility (see
convex transformation in Figure 3) and disappointment aversion. In rank-dependent utility, outcomes
are weighted according to their rank in the distribution, whereas their weights depend on their posi-
tion relative to the disappointment threshold in Gul’s model. This leads to a systematic overweighting
of all outcomes below the threshold at the expense of all outcomes above the threshold. The strength
of the effect depends on the magnitude of the disappointment-aversion parameter ! > 0.
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Figure 5

Probability weighting functions for two types, showing type-specific probability weighting functions for (a) students and
(b) the representative sample. We find a majority group in the student population exhibiting a strongly curved probability
weighting function (type I, 80% of the subjects) and a minority group of expected value maximizers (type II, 20%). The
majority in the representative sample is classified as a comparatively optimistic type (type I, 67%), whereas the minority
displays considerable pessimism expressed by pronounced underweighting of large probabilities (type II, 33%). Parameter
estimates are available from the authors.
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Increasing preference
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Figure 6

Interior of Marschak-Machina triangle for rank-dependent utility. This figure reproduces Figure 2a
but omits the areas close to the boundaries of the triangle. It is evident that indifference curves on
the interior of the triangle are close to linear. As a result, it will be hard to statistically discriminate
between rank-dependent utility theories with inverse S-shaped weighting and theories imposing linear
indifference curves. These curves are predicted by the parameters we estimated for our representative
data (see Table 3).
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Figure 8

Effect of recursive evaluation on observed probability weights, depending on the number of stages m. (a) Atemporal probability
weighting functions for a one-shot evaluation (m ¼ 1) and recursive multistage evaluations (m ¼ 2 and m ¼ 12). Compounding
of probability weights implies more convex transformations. (b) The same as in panel a but for a 12-month delay under the
assumption of an additional layer of uncertainty (i.e., the future is always uncertain). The model captures future uncertainty with
a geometrically declining annual rate of prospect survival s, which results in a probability pst for a prospect (x, p) materializing
in t periods. In this example, s is assumed to be 0.8. When the resolution of uncertainty is delayed by 12 months, risk tolerance
increases because of a more elevated probability weighting curve (m ¼ 1). Recursive evaluation (m ¼ 2, m ¼ 12), however, has
the same qualitative, but less pronounced, effect as in the atemporal model.
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