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Appendix A: Seven Observations: Experimental Evidence and Theoretical Contributions

Table A.1. Related Literature

Observation Experimental Evidence Theoretical Contributions

#1 Risk tolerance increases with delay Jones and Johnson (1973) Baucells and Heukamp (2012)
Shelley (1994)
Ahlbrecht and Weber (1997)
Sagristano et al. (2002)
Noussair and Wu (2006)
Coble and Lusk (2010)
Abdellaoui et al. (2011b)

#2 Patience increases with delay Strotz (1955) Laibson (1997)
Benzion et al. (1989) Halevy (2008)
Loewenstein and Thaler (1989) Sozou (1998)
Ainslie (1991) Dasgupta and Maskin (2005)
Loewenstein and Prelec (1992) Bommier (2006)
Halevy (2015) Pennesi (2017)

Walther, 2010

#3 Risk tolerance is higher for one-shot Gneezy and Potters (1997) Segal (1987a,b, 1990)
than sequential valuation Thaler et al. (1997) Dillenberger (2010)

Bellemare et al. (2005)
Gneezy et al. (2003)
Haigh and List (2005)
Abdellaoui et al. (2015)

#4 Patience is higher for one-shot than Read (2001) Read (2001)
sequential valuation Read and Roelofsma (2003)

Epper et al. (2009)
Dohmen et al. (2017)

#5 Risk tolerance is higher for late Chew and Ho (1994) Kreps and Porteus (1978)
than for immediate resolution Ahlbrecht and Weber (1996) Chew and Epstein (1989)

Arai (1997) Grant et al. (2000)
Lovallo and Kahneman (2000) Epstein and Kopylov (2007)
Eliaz and Schotter (2007) Epstein (2008)
von Gaudecker et al. (2011) Caplin and Leahy (2001)
Ganguly and Tasoff (2017)

#6 Patience is higher for risky payoffs Stevenson (1992) Baucells and Heukamp (2010)
than for certain ones Ahlbrecht and Weber (1997)

Keren and Roelofsma (1995)
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Table A.1. Related Literature

Observation Experimental Evidence Theoretical Contributions

Weber and Chapman (2005)

#7 Risk tolerance is higher for time- Öncüler and Onay (2009) -
first than risk-first order
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Appendix B: Propositions and Proofs

B.1. The General m-Outcome Case

Rearranging terms in Equation (2) yields

V (P ) = u(x1)w(p1) + u(x2)
(
w(p1 + p2)−w(p1)

)
+ ...+ u(xm)

(
1−w(1− pm)

)
=
(
u(x1)− u(x2)

)
w(p1) + ...+

(
u(xm−1)− u(xm)

)
w(1− pm) + u(xm) .

(B.1)
This representation of V clarifies that xm is effectively a sure thing whereas obtaining
something better than xm is risky.

Setting u(x) = 0, the subjective present value of the prospect amounts to

V (P̃ )0 =

((
u(x1)− u(x2)

)
w(p1s

t) + ...

...+
(
u(xm−1)− u(xm)

)
w
(
(1− pm)st

)
+ u(xm)w(st)

)
ρ(t)

=

((
u(x1)− u(x2)

)
w(p1s

t)
w(st) + ...

...+
(
u(xm−1)− u(xm)

)
w
(
(1−pm)st

)
w(st) + u(xm)

)
w(st)ρ(t) .

(B.2)

From the point of view of an outside observer, the subjective probability
distribution of prospect P is not observable. Consequently, she infers probability
weights w̃ and discount weights ρ̃ from observed behavior on the presumption that the
decision maker evaluates the objectively given prospect P , and estimates preference
parameters according to RDU in the standard way:

V (P̃ )0 =

((
u(x1)−u(x2)

)
w̃(p1)+ ...+

(
u(xm−1)−u(xm)

)
w̃(1− pm)+u(xm)

)
ρ̃(t) .

(B.3)
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B.2. Proposition 1: Characteristics of w̃(p)

Given subproportionality of w, t > 0 and s < 1:

1. The function w̃ is a proper probability weighting function, i.e. monotonically
increasing in p with w̃(0) = 0, w̃(1) = 1.

2. w̃ is subproportional.
3. w̃ is more elevated than w: w̃(p)>w(p). The gap between w̃(p) and w(p) increases

with
• time delay t,
• survival risk 1− s, and
• comparatively more subproportional w.

4. The relative gap w̃(p)
w(p) declines in p.

5. w̃ is less elastic than w.
6. The decision weight of the (objectively) worst possible outcome, xm, decreases

with delay t.

Proof of Proposition 1

1. Since w̃(0) = w(0)
w(st) = 0, w̃(1) = w(st)

w(st) = 1, and w̃′ = w′(pst)st

w(st) > 0 hold, w̃ is a

proper probability weighting function.
2. Subproportionality of w̃ follows directly from subproportionality of w as for p > q

and 0 < λ < 1:
w̃(λp)

w̃(λq)
=

w(λstp)

w(λstq)
<

w(stp)

w(stq)
=

w̃(p)

w̃(q)
. (B.4)

3. • Since w is subproportional,

w̃(p) =
w(pst)

w(st)
>

w(p)

w(1)
= w(p) (B.5)

holds for s < 1 and t > 0. Therefore, w̃ is more elevated than w.
• Obviously, elevation gets progressively higher with increasing t and an
equivalent effect is produced by decreasing s. Since w̃ increases monotonically
in t and w̃ ≤ 1 for any t, elevation increases at a decreasing rate.

• In order to show that a comparatively more subproportional probability
weighting function entails a greater increase in observed risk tolerance
we examine the relationship between the underlying atemporal probability
weights w and observed ones w̃. Let w1 and w2 denote two probability
weighting functions, with w2 exhibiting greater subproportionality.
If w1(λ)w1(p) = w1(λpq) holds for a probability q < 1, then w2(λ)w2(p) <
w2(λpq) follows as w2 is more subproportional than w1 (Prelec, 1998). Choose
r < 1 such that w2(λ)w2(p) =w2(λpqr). For λ= st, the following relationships
hold:

w̃1(p)

w1(p)
=

w1(λp)

w1(λ)w1(p)
=

w1(λp)

w1(λpq)
. (B.6)

Applying the same logic to w2 yields

w̃2(p)

w2(p)
=

w2(λp)

w2(λ)w2(p)
=

w2(λp)

w2(λpqr)
>

w2(λp)

w2(λpq)
. (B.7)

Therefore, the relative wedge w̃2(p)
w2(p)

caused by subproportionality is larger

than the corresponding one for w1.

4. It is straightforward to show that
∂
(

w̃(p)
w(p)

)
∂p = w(pst)

pw(st)w(p) [εw(ps
t)− εw(p)] < 0, as

the elasticity of a subproportional w, εw, is increasing in p.
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5. For the elasticity of w̃, εw̃(p), the following relationship holds:

εw̃(p) =
w̃′(p)p

w̃(p)
=

w′(pst)pst

w(pst)
= εw(ps

t) < εw(p) , (B.8)

as the elasticity εw increases in its argument iff w is subproportional.
6. As w̃(p)>w(p) holds for any 0< p< 1, π̃m = 1− w̃(1− pm)< 1−w(1− pm) = πm

results for the decision weight of xm. As w̃ increases with t, the weight of xm

declines with time delay. ■

B.3. Proposition 2: Characteristics of ρ̃(t)

Given subproportionality of w:

1. ρ̃(t) is a proper discount function for 0 < s ≤ 1, i.e. decreasing in t, converging to
zero with t → ∞, and ρ̃(0) = 1.

2. Observed discount rates η̃(t) are higher than the rate of pure time preference η
for s < 1.

3. Observed discount rates decline with the length of delay for s < 1.
4. Greater survival risk generates a greater departure from constant discounting.
5. Comparatively more subproportional probability weighting generates a

comparatively greater departure from constant discounting.

Proof of Proposition 2

1. ρ̃(0) = w(s0)ρ0 = 1. Since w′ > 0 holds, ∂w(st)
∂t < 0 and, therefore, ρ̃′ < 0. Finally,

lim
t→∞

ρ̃(t) = 0 (in terms of discount rates: lim
t→∞

η̃(t) = η).

2. Discount rates are generally defined as the rates of decline of the respective

discount functions, i.e. η = −ρ′(t)
ρ(t) and η̃(t) = − ρ̃′(t)

ρ̃(t) . Therefore,

η̃(t) = − ρ̃′(t)

ρ̃(t)

= −w′(st)st ln(s) exp(−ηt)−w(st) exp(−ηt)η

w(st) exp(−ηt)

= −
(
w′(st)st

w(st)
ln(s)− η

)
= − ln(s)εw(s

t) + η

> η

(B.9)

since ln(s) < 0, w > 0, w′ > 0. Note that w′(st)
w(st) s

t corresponds to the elasticity

of the probability weighting function w evaluated at st, εw(s
t).

3. Since the elasticity of a subproportional function is increasing in its argument,
the elasticity of w(st) is decreasing in t. Thus,

η̃′(t) = − ln(s)
∂εw(s

t)

∂t
< 0 . (B.10)

4. In order to derive the effect of increasing survival risk, i.e. decreasing s, we

examine the sensitivity of ρ̃(t+1)
ρ̃(t)ρ̃(1) =

w(st+1)
w(s)w(st) , which measures the departure from

constant discounting between periods t+ 1 and t, with respect to changing s:
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∂
∂s

(
w(st+1)

w(s)w(st)

)
= 1(

w(s)w(st)
)2((1 + t)stw(s)w(st)w′(st+1)− tst−1w(s)w(st+1)w′(st)

−w(st)w(st+1)w′(s)
)

= 1

s
(
w(s)w(st)

)2((1 + t)st+1w(s)w(st)w′(st+1)− tstw(s)w(st+1)w′(st)

−sw(st)w(st+1)w′(s)
)

= w(st+1)
sw(s)w(st)

(
(1+t)st+1w′(st+1)

w(st+1)
− tstw′(st)

w(st) − sw′(s)
w(s)

)
= w(st+1)

sw(s)w(st)

(
(1 + t)εw(s

t+1)− tεw(s
t)− εw(s)

)
< 0 .

As st+1 < st < s, εw(s
t+1) < εw(s

t) < εw(s) and, hence, the sum of the
elasticities in the final line of the derivation is negative. Therefore, increasing
survival risk, i.e. decreasing s, entails a greater departure from constant
discounting.

5. In order to examine the effect of the degree of subproportionality on decreasing
impatience, suppose that the probability weighting function w2 is comparatively
more subproportional than w1, as defined in Prelec (1998), and that the following
indifference relations hold for two decision makers 1 and 2 at periods 0 and 1:

u1(y) = u1(x)w1(s)ρ for 0 < y < x,

u2(y
′) = u2(x

′)w2(s)ρ for 0 < y′ < x′ .
(B.11)

Due to subproportionality, the following relation holds for decision maker 1
in period t:

1 =
u1(x)w1(s)ρ

u1(y)
<

u1(x)w1(s
t+1)ρt+1

u1(y)w1(st)ρt
. (B.12)

Therefore, the probability of prospect survival has to be reduced by
compounding s over an additional time period ∆t to re-establish indifference:

u1(y)w1(s
t)ρt = u1(x)w1(s

t+1+∆t)ρt+1. (B.13)

It follows from the definition of comparative subproportionality that this
adjustment of the survival probability by ∆t is not sufficient to re-establish
indifference with respect to w2, i.e.

u2(y
′)w2(s

t)ρt < u2(x
′)w2(s

t+1+∆t)ρt+1. ■ (B.14)

B.4. Folding Back of Survival Trees

In RDU, subproportional preferences are generally not sufficient to produce a
preference for one-shot resolution of uncertainty. Resolution processes that can be
represented by a survival tree are an exception - in this case, folding back of
the tree generates compounded decision weights that are always smaller than the
corresponding one-shot weights. To illustrate this result, we use an example with
n = 3 stages and m = 3 outcomes, as the n = m = 2-case is trivial.

A survival tree is characterized by the following resolution process: At each chance
node either the certain outcome materializes or the tree continues to the next stage
when everything is still possible. Our example is depicted in Figure B.1.
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x3

1 − p

x3

1 − q

x3

1 − r1 − r2

x2
r2

x1

r1

q

p

Figure B.1. Survival Tree with n = 3 Stages and m = 3 Outcomes
The tree depicts the resolution of survival risk of a prospect P =
(x1, pqr1;x2, pqr2;x3, 1− pq(r1 + r2)) in three stages.

Applying folding back, the value of the prospect is given by

V3(P ) =
(
(u(x1)− u(x2))w(r1) + (u(x2)− u(x3))w(r1 + r2) + u(x3)

)
w(q)w(p)

+ u(x3)(1−w(q))w(p) + 1−w(p))

=
(
(u(x1)− u(x2))w(r1) + (u(x2)− u(x3))w(r1 + r2) + u(x3)

)
w(q)w(p)

+ u(x3)(1−w(q)w(p))

=
(
(u(x1)− u(x2))w(r1) + (u(x2)− u(x3))w(r1 + r2)

)
w(q)w(p) + u(x3) .

(B.15)

Clearly, it does not matter how many final branches the tree possesses - the formula
generalizes to m outcomes in a straightforward way as the rank-dependent decision
weights at the final stage get compounded with w(p)w(q). The same applies if the
number of stages is greater than three. If uncertainty resolves in one shot, the value
of the prospect is represented by

V1(P ) =
(
(u(x1)− u(x2))w(pqr1) + (u(x2)− u(x3))w(pq(r1 + r2)) + u(x3) . (B.16)

Subproportionality implies that w(pqr1) > w(q)w(p)w(r1) and w(pq(r1 + r2)) >
w(q)w(p)w(r1 + r2) and, therefore, V1(P ) > V3(P ). In other words, if uncertainty
resolves according to a survival tree, one-shot resolution is preferred to sequential
resolution.

When future uncertainty comes into play, the survival tree consists of an additional
branch at each chance node, as shown in Figure B.2, and the former certain outcome
x3 becomes risky as it is subjected to survival probability, here assumed to be s
at each stage. The question now arises whether preference for one-shot resolution is
preserved for this more complex resolution process. Recalling that u(x) = 0,

V3(P̃ )=
(
(u(x1)− u(x2))w(r1s) + (u(x2)− u(x3))w((r1 + r2)s)

)
w(qs)w(ps)

+u(x3)(w(s))
3 .

(B.17)
Its one-shot counterpart is evaluated as

V1(P̃ )=
(
(u(x1)− u(x2))w

(
pqr1s

3
)
+ (u(x2)− u(x3))w

(
pq(r1 + r2)s

3
))

+u(x3)w
(
s3
)
.

(B.18)

Obviously, the decision weights for V1(P̃ ) are greater than the respective ones for
V3(P̃ ). Thus, for this specific structure of uncertainty resolution, preference for one-
shot resolution is preserved under subproportionality for any n > 2 and m > 2.
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Consequently, w̃(pqr1) is defined as

w̃(pqr1) =
w
(
pqr1s

3
)

w (s3)
, (B.19)

and w̃3(pqr1) is defined as

w̃3(pqr1) =
w(ps)w(qs)w(r1s)

w(s)3
, (B.20)

which corresponds to the representation in Equation (B.21) where the passage of time
is modeled explicitly by the partial probabilities.

x

1−
s

x

1− s

x1 − s

x3s

s

(1 − p)s

x

1−
s

x1 − s

x3s
(1 − q)s

x

1− s

x3
(1 − r1 − r2)s

x2

r2s

x1

r1s

qs

ps

Figure B.2. Survival Tree with n = 3 Stages and m = 3 Outcomes with Future Uncertainty

The tree depicts the resolution of survival risk of a prospect P̃ = (x1, pqr1s
3;x2, pqr2s

3;x3, (1−
(r1 + r2))pqs

3;x, 1− pqs3) in three stages.

These results generalize to multi-outcome prospects resolving over more than two
stages if uncertainty resolves in a way analogous to the process described above: The
topmost branch of the survival tree defines the path to “everything is still possible”
when uncertainty resolves fully at the payment date. At each chance node along this
topmost path the tree has three branches, where the two branches below the topmost
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one reflect the partial resolution of uncertainty of xm contingent on its stage-by-stage
prospect survival, and of x, respectively. In this case, for any number of outcomes
m ≥ 1, the observed probability weights are given by

w̃n(p, t) =

∏n
i=1w

(
p

τi
t sτi

)
∏n

i=1w (sτi)
=

n∏
i=1

w̃
(
p

τi
t , τi

)
, (B.21)

when the interval [0, t] is partitioned into n subintervals with lengths τi, i ∈ {1, ..., n},
such that

∑n
i=1 τi = t.

The following Proposition 3 summarizes our insights on subproportional
probability weights w themselves, which drive overall prospect value, without teasing
apart the separate effects on observed risk tolerance and discounting behavior. We
extend these results to observed risk tolerance w̃ in Proposition 4. Since discount
weights ρ̃(t) = w(st) are simple probability weights themselves, Proposition 3 also
speaks directly to observed discounting behavior.

Segal’s work on two-stage prospects encompass the following results: For 1 > p =
qr > 0 the compounding of the respective weights always leads to lower prospect
values, i.e. w(qr) > w(q)w(r) holds whatever are the values of q and r. Here the order
of r and q, i.e. which probability resolves first, does not play a role. Furthermore, a
prospect’s minimum value is attained when compounding occurs over equiprobable
stages, i.e. when r = q =

√
p. We generalize these insights in Proposition 3.

Additionally, it can be schown that positively skewed prospects are affected more
strongly by compounding of the respective probability weights:

∂
∂p

[
w(p)

w(q)w(p/q)

]
= w(p)

pw(q)w(p/q) [ε(p)− ε(p/q)] < 0, as p < p/q and the elasticity of

w, ε, is increasing in p.

B.5. Proposition 3: Characteristics of wn(p)

Given subproportionality of w, s < 1, t > 0, prospect risk and survival risk resolving
simultaneously along a survival tree, and folding back:

1. For any number of resolution stages n > 1, probability weights w for one-shot
resolution of uncertainty are greater than compounded probability weights for
sequential resolution.

2. For a given number of resolution stages n, probability weights are smallest for
evenly spaced partitions τi =

t
n = τ .

3. For evenly spaced partitions, probability weights decline with the number of
resolution stages n.

Proof of Proposition 3

1. Setting q = pst or q = st, respectively, we prove by induction that w(q) >∏n
i=1w(qi) for probability q, 0 < q < 1, and q =

∏n
i=1 qi.

• For n = 2 subproportionality implies w(q) = w(q1q2) > w(q1)w(q2).
• Assume that w(

∏n
i=1 ri) >

∏n
i=1w(ri) for any probabilities 0 < ri < 1.

• For q =
∏n+1

j=1 qj subproportionality implies

w(q) =w

(
qn+1

n∏
i=1

qi

)
>w(qn+1)w

(
n∏

i=1

qi

)
>w(qn+1)

n∏
i=1

w(qi) =

n+1∏
j=1

w(qj).

2. Without loss of generality, we reorder the sequence of subintervals such that
τ1 ≤ τ2 ≤ ... ≤ τn. For some i, τi−1 < τi holds because otherwise the partition
would be equally spaced right away. In this case, there exists ε > 0 such
that τi−1 + ε < τi − ε is still satisfied. Due to subproportionality, the following
relationship holds for 0 < q < 1:
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w(qτi−1)

w(qτi−ε)
>

w(qτi−1qε)

w(qτi−εqε)
=

w(qτi−1+ε)

w(qτi)
, (B.22)

implying w(qτi−1)w(qτi) > w(qτi−ε)w(qτi−1+ε).
3. Consider two equally spaced partitions of [0, t]: (τi =

t
n := τ)i=1,...,n and (δi =

t
n−1 := δ)i=1,...,n−1. Our claim is that for 0 < p ≤ 1,

n∏
i=1

w
(
p

τ
t sτ
)
<

n−1∏
i=1

w
(
p

δ
t sδ
)
. (B.23)

Setting q =
(
p

1
t s
) t

n(n−1)
, we examine whether(

w
(
qn−1

))n

<

(
w
(
qn
))n−1

. (B.24)

Proceeding by induction:

• n = 2: Subproportionality implies
(
w(q)

)2
< w

(
q2
)
.

• n = 3: Subproportionality implies w
(
q3
)
>

(
w(q2)

)2

w(q) . Thus,

(
w(q3)

)2
>

(
w(q2)

)2
w(q)

(
w(q2)

)2
w(q)

>

(
w(q2)

)3
w(q2)(

w(q)
)2

>

(
w(q2)

)3(
w(q)

)2
(
w(q)

)2 =
(
w(q2)

)3
.

(B.25)

• n → n+ 1: Suppose that
(
w(qn−1)

)n
<
(
w(qn)

)n−1

holds. Subproportion-

ality implies w(qn−1)
w(qn) > w(qn)

w(qn+1)
. Hence,

(
w(qn+1)

)n
>

(
w(qn)w(qn)

w(qn−1)

)n

=

(
w(qn)

)n+1(
w(qn)

)n−1

(
w(qn−1)

)n
>

(
w(qn)

)n+1(
w(qn−1)

)n
(
w(qn−1)

)n =
(
w(qn)

)n+1

.

(B.26)

■

Since observed risk tolerance depends on the interaction of probability weights and
discount weights (subproportional probability weights themselves), it is a priori not
clear whether all these characteristics carry over to observed risk tolerance. As it turns
out, with one exception, the characteristics of subproportional probability weights
shape observed delay-dependent risk tolerance accordingly. We enter uncharted
territory with the following proposition because to our knowledge so far no
experiments on the process dependence for genuinely delayed risks exist.

B.6. Proposition 4: Characteristics of w̃n(p)

Given subproportionality of w, s < 1, t > 0, prospect risk and survival risk resolving
simultaneously along a survival tree, and folding back:
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1. For any number of resolution stages n > 1, risk tolerance is higher for one-
shot resolution of uncertainty than for sequential resolution of uncertainty,
w̃(p, t) > w̃n(p, t).

2. For a given number of resolution stages n, risk tolerance is lowest for evenly
spaced partitions if the elasticity of w is concave.

3. For evenly spaced partitions, risk tolerance declines with the number of resolution
stages, w̃n(p, t) < w̃n−1(p, t).

Proof of Proposition 4

1. Consider Equation (B.21), for τi < t:

w̃n(p, t) =
n∏

i=1

w̃
(
p

τi
t , τi

)
.

Note that w̃
(
p

τi
t , τi

)
=

w

(
p

τi
t sτi

)
w(sτi) <

w

(
p

τi
t sτist−τi
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According to Proposition 1, w̃ (p, t) is subproportional for a fixed length of
delay t and, therefore,
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2. We proceed by induction.
• Consider the case of n = 2 and assume that the time interval of length t
is divided into two subintervals of lengths τ and t− τ with τ < t
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the brackets is positive if the elasticity of w, εw, is a strictly concave function.
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where (τi)i=1,...,n is a partition of the time interval t with
∑n

i=1 τi = t.
• n → n+ 1: Assume that for t > 0

tεw(q
t
n )−

n∑
i=1

τiεw(q
τi) > 0 (B.28)

holds. Define a partition (δi)i=1,...,n+1 of t as follows:
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as the elasticity of w is increasing. ■

Contrary to the underlying probability weights w themselves, subproportionality
alone does not guarantee that, for a given number of resolution stages, risk tolerance
w̃ attains its minimum at evenly spaced partitions. The additional requirement of
concavity of the elasticity of w implies that the elasticity increases more quickly for



Epper and Fehr-Duda Risk in Time 88

small probabilities than for large ones. While such a characteristic has not attracted
any attention in the literature, there is a nice specimen of a subproportional regressive,
i.e. cutting the diagonal from above, probability weighting function with concave
elasticity, the so-called neo-additive specification

w(p) =


0 for p = 0
β + αp for 0 < p < 1
1 for p = 1

. (B.32)

with 0 < β < 1, 0 < α ≤ 1− β. If β = 0, w is not subproportional, for α+ β = 1
it is not regressive. It is linear over the inner probability interval and, thus, provides
an excellent approximation for the commonly used nonlinear functional forms. Since
we rarely, if at all, have experimental evidence for behavior over probabilities that
are extremely small or extremely large, such an approximation seems justified. This
specification is also very useful for the case of ambiguity, when the probabilities are
not precisely known (Chateauneuf et al., 2007).

B.7. Proposition 5: Preferences for Resolution Timing

Given subproportionality of w, s < 1, t1 < t, and folding back:

1. Prospects with prospect risk resolving at the time of payment t are valued more
highly than prospects resolving at t1 < t.

2. The wedge between late and immediate resolution, w(pst)
w(p)w(st) , declines with

probability p.
3. The wedge between late and immediate resolution increases with time horizon t

and survival risk 1− s.

Proof of Proposition 5 Without loss of generality, we set the number of outcomes

m = 2.

1. The value of the prospect to be resolved immediately amounts to((
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)
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)
w(st)

<

((
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)w(pst)
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)
w(st) ,

(B.33)

as w(pst) > w(p)w(st) is implied by subproportionality of w. Thus, prospects
resolving at the date of payment t are valued more highly than prospects with
immediate resolution.

What happens if prospect risk is not resolved immediately but rather at some
later time t1, 0 < t1 < t? After t1, only survival risk remains to be resolved. In
this case, the prospect’s present value amounts to((

u(x1)− u(x2)
)w(pst1)
w(st1)

+ u(x2)

)
w(st1)w(st−t1) . (B.34)

Subproportionality implies w(p) < w(pst1)
w(st1)

< w(pst)
w(st) and, therefore, observed risk

tolerance is highest for resolution at payment time t. Moreover, the late-resolution
discount weight w(st) = w(st1st−t1) is also greater than w(st1)w(st−t1) for any
earlier t1, implying that late resolution is always preferred.
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2. Examining the derivative of w(pst)
w(p) with respect to p yields
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as p > pst and the elasticity is increasing. Therefore, the wedge between late
evaluation and immediate evaluation decreases with p.

3. The derivative of w(pst)
w(st) with respect to t yields
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(B.36)

as ln(s)< 0, st > pst and the elasticity is increasing. Therefore, the wedge between
late and immediate evaluation increases with time horizon t and, equivalently,
with survival risk 1− s. ■
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Figure B.3. Later and Sooner Resolution of Prospect Risk
(1) Later: The tree depicts uncertainty resolution during the final
stage. (2) Sooner: The probability tree shows the resolution of
prospect risk after the first stage, with survival risk fully resolving
at t.

While it is always the case that late resolution at t is preferred to any earlier
resolution time t1, we cannot ascertain that preferences for later resolution timing
increase monotonically in t1. Examining the earlier situation (Panel ii) in Figure B.3,
renders the prospect value (setting ρ = 1 again)(

u(x1)− u(x2)
)
w(pst1)w(st−t1) + u(x2)w(s

t1)w(st−t1) . (B.37)

We have already established that the weight of the allegedly certain outcome
x2, w(s

t1)w(st−t1), attains its minimum value at t1 = t/2. Analogously, for the risky
component pst1 = st−t1 must hold at its minimum. Solving for t1 yields

t∗1 =
t

2
− ln(p)

2 ln(s)
, (B.38)
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which lies below t
2 . Regarding a simple prospect (x, p; 0, 1− p), if t∗1 > 0, then earlier

resolution may be preferred to some later times before t
2 , otherwise prospect value

increases monotonically in resolution time. The latter is the case for p ≤ st. For a
given prospect, this condition is more likely to be met for low survival risk and/or
short time horizons.
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Appendix C: Quantitative Assessment: Experimental Evidence

Table C.1. Study Overview

Observation Study Sample Elicitation method Incentives
#1 Abdellaoui et al. (2011a) 31+31 French students certainty equivalents via 31 subjects: real

Study 2 bisection 31 subjects: hypothetical
#2 Epper et al. (2011b) 112 Swiss students certainty equivalents via real

choice lists
#3 Abdellaoui et al. (2015) 209 French students certainty equivalents via real

choice lists
#4 Epper et al. (2011b) 112 Swiss students certainty equivalents via real

choice lists
#5 Arai (1997) 44 Swedish students rating scale and choice hypothetical

frequencies
#6 Weber and Chapman (2005) 124 US students present certainty hypothetical

(Experiment 2) equivalents via
bisection

#7 Öncüler and Onay (2009) 39 French students certainty/present hypothetical
(Study 1a) equivalents via

text field
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Appendix D: Perceived Uncertainty: Experimental Design, Procedures
and Estimation Strategy

D.1. Experiment

We use data from an online experiment with a broad population sample that we
conducted in 2009 (see also Epper et al. (2011a)). Participants were recruited by
a professional survey institute specializing in market and social research with the
objective of representativeness for the Swiss German speaking population according
to three types of socio-economic characteristics: gender, age class and employment
status. All participants who completed the experiment were paid a flat participation
fee. A subset of them also received a payment based on a randomly determined
decision they made during the experiment.

We work with the response data of the 282 subjects who fully completed the study.
The time discounting task consisted of 28 choice situations appearing in individual
random order. The full set of choice situations is presented in Table D.1. In each
choice situation, participants had to choose between a fixed later monetary amount
x2 paid out in t2 months and a list of sooner monetary amounts x1 paid out in t1
months, with t1 < t2. The sooner outcomes consisted of 21 varying amounts equally
spaced between x2 and 0. Figure D.1 depicts an example choice situation.

Table D.1. Choice Situations - Time Discounting Task

t1 t2 x2
1 0 2 20
2 0 4 20
3 0 6 20
4 0 8 20
5 2 4 20
6 4 6 20
7 6 8 20
8 0 2 40
9 0 4 40

10 0 6 40
11 0 8 40
12 2 4 40
13 4 6 40
14 6 8 40
15 0 2 60
16 0 4 60
17 0 6 60
18 0 8 60
19 2 4 60
20 4 6 60
21 6 8 60
22 0 2 80
23 0 4 80
24 0 6 80
25 0 8 80
26 2 4 80
27 4 6 80
28 6 8 80

The table lists the full set of choice situations that appeared in the time discounting part of the
experiment. The situations appeared in individual random order. t1 indicates the delay of the
sooner equivalent x1 in months. t2 indicates the delay of the later fixed amount x2. The amounts
are in Swiss Francs (see Footnote 20).



Epper and Fehr-Duda Risk in Time 93

Option A
Your choice

Option B
in 2 months in 4 months

0 CHF 60 A ◉ ◯ B

CHF 60

1 CHF 57 A ◉ ◯ B

2 CHF 54 A ◉ ◯ B

3 CHF 51 A ◉ ◯ B

4 CHF 48 A ◉ ◯ B

5 CHF 45 A ◉ ◯ B

6 CHF 42 A ◉ ◯ B

7 CHF 39 A ◯ ◉ B

8 CHF 36 A ◯ ◉ B

9 CHF 33 A ◯ ◉ B

10 CHF 30 A ◯ ◉ B

11 CHF 27 A ◯ ◉ B

12 CHF 24 A ◯ ◉ B

13 CHF 21 A ◯ ◉ B

14 CHF 18 A ◯ ◉ B

15 CHF 15 A ◯ ◉ B

16 CHF 12 A ◯ ◉ B

17 CHF 9 A ◯ ◉ B

18 CHF 6 A ◯ ◉ B

19 CHF 3 A ◯ ◉ B

20 CHF 0 A ◯ ◉ B

Figure D.1. Example choice situation - Time Discounting Task

In the example situation, the fixed later amount x2 materializing in t2 = 4 months
from the point in time the choice is made is CHF 60.20 In each of the 21 rows of the
menu, the participant had to choose between this fixed later amount and a sooner
amount x1 materializing in t1 = 2 months. The procedure yields an estimate of the
smaller sooner amount x1 which makes the participant indifferent to receiving x2

at the later date. We use the midpoint of the two amounts in Option A where the
participant switched from Option A to Option B as an estimate of the individual’s i
sooner equivalent x1ij in choice situation j.

The risk taking task consisted of 20 choice situations appearing in individual
random order. The full set of choice situations is presented in Table D.2. In each
choice situation, participants had to choose between a fixed lottery (xh, ph;xl, 1− ph)
yielding a higher amount xh with probability ph or a lower amount xl with probability
1 − ph, and a certain monetary amount y. The certain outcomes consisted of 21
varying amounts equally spaced between xh and xl. Figure D.2 depicts an example
choice situation.

In the example situation, the fixed lottery is (60, 0.25; 20, 0.75). In each of the 21
rows of the menu, the participant had to choose between the fixed binary lottery and
a certain amount y. The procedure yields an estimate of the certain amount y which
makes the participant indifferent to receiving the lottery (xh, ph;xl, 1− ph). We use
the midpoint of the two amounts in Option A where the participant switched from
Option A to Option B as an estimate of the individual’s i certainty equivalent yij in
choice situation j.

20At the time of the experiment, CHF 1 ≈ USD 1.06.
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Table D.2. Choice Situations - Risk Taking Task

xh ph xl
1 40 0.50 0
2 40 0.10 20
3 40 0.50 20
4 40 0.90 20
5 60 0.10 0
6 60 0.90 0
7 60 0.05 20
8 60 0.25 20
9 60 0.75 20

10 60 0.95 20
11 60 0.25 40
12 60 0.75 40
13 80 0.50 20
14 80 0.05 40
15 80 0.25 40
16 80 0.50 40
17 80 0.75 40
18 80 0.95 40
19 80 0.10 60
20 80 0.90 60

The table lists the full set of choice situations that appeared in the risk taking part of the experiment.
The situations appeared in individual random order. ph indicates the probability of the higher
lottery amount xh. 1− ph indicates the probability of the lower lottery amount xl. The amounts
are in Swiss Francs (see Footnote 20).

Option A
Your choice

Option B
guaranteed profit uncertain profit

0 CHF 60 A ◉ ◯ B

A profit of CHF 60
in 25% of all cases

and a profit of CHF 20
in 75% of all cases

1 CHF 58 A ◉ ◯ B

2 CHF 56 A ◉ ◯ B

3 CHF 54 A ◉ ◯ B

4 CHF 52 A ◉ ◯ B

5 CHF 50 A ◯ ◉ B

6 CHF 48 A ◯ ◉ B

7 CHF 46 A ◯ ◉ B

8 CHF 44 A ◯ ◉ B

9 CHF 42 A ◯ ◉ B

10 CHF 40 A ◯ ◉ B

11 CHF 38 A ◯ ◉ B

12 CHF 36 A ◯ ◉ B

13 CHF 34 A ◯ ◉ B

14 CHF 32 A ◯ ◉ B

15 CHF 30 A ◯ ◉ B

16 CHF 28 A ◯ ◉ B

17 CHF 26 A ◯ ◉ B

18 CHF 24 A ◯ ◉ B

19 CHF 22 A ◯ ◉ B

20 CHF 20 A ◯ ◉ B

Figure D.2. Example choice situation - Risk Taking Task
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D.2. Estimation

In the main text, we present results from an analysis based on the same model we
used in the other quantitative assessments. We again fix the preference parameters
at the values in Table 3. The estimation approach we describe in the following,
however, allows us to estimate individual-level survival probabilities si from our
time discounting data. Setting t′ = t/12, such that si reflect the annual survival
probabilities, the sooner equivalent x̂1 predicted by our model is

x̂1ij = u−1

exp
(
− η(t′2j − t′1j)

)w(st′2ji

)
w
(
s
t′1j
i

) u(x2j)

 ,

where i and j refer to the individual and choice situation, respectively, and u−1

denotes the inverse of the utility function.
To estimate si we further need to impose assumptions on the stochastic part of

our model. We assume a Fechnerian error term εij ∼ N (0, κix2j) with an individual
variance parameter κi that is proportional to the scale of the choice list. The observed
sooner equivalent x1ij is then given by x1ij = x̂1ij + εij .

We employ a Bayesian hierarchical approach (see Gelman, Carlin, Stern and Rubin
(2013) for a detailed exposition). This estimation approach provides a compromise
between estimation of a representative agent model (a model with complete pooling of
the choice data) and estimation of individual-level models (models without pooling,
i.e. models that take each individual’s data as produced by an independent data-
generating process). This partial pooling approach yields individual-level parameters
(in our case si and κi), but - by assuming that these parameters stem from a
sample distribution with an estimated location and scale - it disciplines individuals
with otherwise unreliably estimated parameters to be part of that distribution.
The individual estimates thus benefit from the information available about other
individuals in the sample.21

Estimation of the Bayesian hierarchical model yields individual-level survival
probabilities which we use as an input for our analyses in the main text. The
untransformed individual parameters are assumed to come from a normal population
distribution with means µs and µκ, and standard deviations σs and σκ, respectively.
For simplicity, we further assume prior independence, i.e. we do not specify a prior
parameter covariance matrix.22 We parameterize si and κi, such that

si =
1

1 + exp(−µs − σss′i)
,

and

κi = exp(µκ + σκκ
′
i) ,

where the vectors s′i and κ′
i capture the (standardized) individual offsets (or

heterogeneity). The expit and exponential functions ensure that the individual
survival probabilities and error variances lie within the unit interval and R+,
respectively. We pick a relatively flat prior distribution for the individual survival
probabilities, and a wide range of (plausible) error variances. For the non-centered
parameterization, the priors of s′i and κ′

i are standard normal. We obtain samples

21The result is that rather extreme parameters are “shrunk” towards the sample mean. If the
estimated scale of the distribution tends to zero the model converges towards a representative
agent model.

22Note, however, that this does not preclude the parameters to correlate a posteriori.
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from the posterior distribution of µs, µκ, σs, σκ and the individual deviation vectors
s′i and κ′

i via a Hamiltonian Monte Carlo algorithm.23

To ensure that we can recover individual-level model parameters, and, in
particular, si from the data at our disposal, we ran a series of simulation tests with
various assumptions on the location and scale of the survival probability distribution.
This exercise confirmed that we can back out individual-level parameters even if the
simulated distribution of survival probabilities is uniform, it is very tight or if it
consists of survival probabilities that are all close to zero or one.

To verify the robustness of our conclusions, we have also estimated a model that
relaxes homogeneity in both the risk and time preference parameters. To make this
possible, we took advantage of the risk taking data that we have available. More
specifically, we replace the assumptions in Table 3 with individually estimated risk
preference parameters, and then estimate an intertemporal choice model that also
permits individuals to differ in their rate of time preference. Thereby, we restrict our
attention to subjects who pass a simple test of first-order stochastic dominance.

Mean posterior parameters lie close to the global parameter values that we
assumed for the student samples considered in our calibration exercise, with the
only exception being the rate of time preference for which we find higher means
in our broad population sample. The model allowing for heterogeneity in all
preference parameter yields survival probabilities that are closer to one with posterior
means of 0.970 (UNCERTAINTY=0) and 0.921 (UNCERTAINTY=1), respectively.
However, the previous ranking of subjects with regard to where they lie in the
sample distribution remains largely intact: A Spearman rank-correlation test of
survival probabilities estimated using the model in the main text and the model
with heterogeneity in all parameters yields a coefficient of 0.713 and a p-value of
approximately zero. The mean risk preferences of the two groups lie very close to
each other. There is, however, a substantial difference in annual survival probabilities
of almost 5pp.

Table D.3. Posterior Means Conditional on Uncertainty Perception

Parameter UNCERTAINTY=0 UNCERTAINTY=1
s 0.969 0.920
η 0.491 0.480
ρ 0.866 0.849
α 0.475 0.482
β 0.937 0.968

The table shows posterior means for both UNCERTAINTY groups.

Appendix E: Additional Materials

E.1. The Equivalence of Subproportionality and Increasing Elasticity

We use Prelec’s (1998) definition of (strict) subproportionality: A probability
weighting function w(p) is subproportional if for all 1 ≥ p > q > 0 and 0 < λ < 1

w(p)

w(q)
>

w(λp)

w(λq)
. (E.1)

23Here we ex-post condition the distribution on uncertainty perception. We have also estimated
a model where the two perception groups can follow different parameter distributions at the
estimation stage. This exercise yields nearly identical results.
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As p > q, Equation E.1 holds if and only if

w(p)
w(λp) >

w(q)
w(λq) ⇐⇒ ∂

∂p

(
w(p)
w(λp)

)
> 0

⇐⇒ w(p)
pw(λp)

[
w′(p)p
w(p) − w′(λp)λp

w(λp)

]
⇐⇒ ε(p) > ε(q) ,

(E.2)

where ε denotes the elasticity of w, i.e. iff the elasticity of w is increasing.

E.2. A Note on Sequential Evaluation

In his Proposition 1, Dillenberger (2010) shows that, under recursivity, negative
certainty independence (NCI) and a weak preference for one-shot resolution of
uncertainty (PORU) are equivalent. The NCI axiom requires the following to hold:
If a prospect P = (x1, r;x2, 1 − r) is weakly preferred to a degenerate prospect
D = (y, 1), then mixing both with any other prospect does not result in the mixture
of the degenerate prospect D being preferred to the mixture of P . This axiom is
weaker than the standard independence axiom and does not put any restrictions
on the reverse preference relation when a degenerate prospect is originally preferred
to a non-degenerate one. The latter case characterizes the typical Allais certainty
effect. NCI allows for Allais-type preference reversals but does not imply them. David
Dillenberger’s Proposition 3 demonstrates that NCI is generally incompatible with
rank-dependent utility unless the probability weighting function is linear, i.e. unless
RDU collapses to EUT. An intuitive explanation for Dillenberger’s Proposition 3 is
that under RDU prospect valuation is sensitive to the rank order of the outcomes
and, therefore, mixtures with other prospects may affect the original rank order of
outcomes in P (and D). How does Dillenberger’s result relate to our claim that
subproportional probability weights conjointly with folding back imply a strong
preference for one-shot resolution of uncertainty?

The crucial insight is that for the class of resolution processes studied in this
paper changes in rank order do not occur and NCI is satisfied. To see this,
assume that the prospect (x1, p;x2, 1− p), x1 > x2 ≥ 0, gets resolved in two stages(
(x1, r;x2), q; (x2, 1), 1 − q

)
such that p = qr. In the atemporal case, when there

is no additional survival risk, the two-stage prospect continues to be a strictly two-
outcome one and the only relevant mixtures are those involving x2. Suppose that P =
(x1, r;x2, 1− r) ≿ (y, 1) = D, with x1 > y > x2 and consider the following mixtures
with (x2, 1− λ) for some λ ∈ (0, 1): P ′ = (x1, λr;x2, 1− λr) and D′ = (y, λ;x2, 1− λ).
The following relationships hold:

P ≿ D ⇒ V (P ) =
(
u(x1)− u(x2)

)
w(r) + u(x2) ≥ u(y) = V (D)

V (D′) = u(y)w(λ) + u(x2)
(
1−w(λ)

)
≤
((

u(x1)− u(x2)
)
w(r) + u(x2)

)
w(λ) + u(x2)

(
1−w(λ)

)
=
(
u(x2)− u(x1)

)
w(r)w(λ) + u(x2)

<
(
u(x2)− u(x1)

)
w(λr) + u(x2)

= V (P ′)

(E.3)

because w(r)w(λ) < w(λr) for any λ ∈ (0, 1) (and hence also for λ = q) due to
subproportionality of w. Consequently, for mixtures with the smaller outcome x2,
NCI, and therefore also PORU, is strongly satisfied. If the mixing prospect may
be any arbitrary prospect, in other words if surprises are possible in the course of
uncertainty resolution, this result does not hold generally. The only surprise that
is still admissible is the occurrence of an outcome worse than x2, say z. Define
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P ′′ =
(
x1, λr;x2, λ(1− r); z, 1− λ

)
and D′′ = (y, λ; z, 1− λ).

V (D′′) = u(y)w(λ) + u(z)
(
1−w(λ)

)
≤
((

u(x1)− u(x2)
)
w(r) + u(x2)

)
w(λ) + u(z)

(
1−w(λ)

)
=
(
u(x1)− u(x2)

)
w(r)w(λ) +

(
u(x2)− u(z)

)
w(λ) + u(z)

<
(
u(x1)− u(x2)

)
w(λr) +

(
u(x2)− u(z)

)
w(λ) + u(z)

= V (P ′′) .

(E.4)

For u(z) = 0, this case is exactly the situation studied in this paper when survival
risk comes into play.
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E.3. Characteristics of Functional Specifications of Probability Weights

In this section we review a number of probability weighting functions that are
either globally or locally subproportional. We limit our attention to functional
forms with at most two parameters. Recall that subproportionality is equivalent
to increasing elasticity. Consequently, if the elasticity is U-shaped, the function is
supraproportional over the range of small probabilities and subproportional over large
probabilities. These functions still capture the certainty effect but not necessarily
general common ratio violations. Many specifications used in the literature exhibit
such a characteristic. Some experimenters found reverse common ratio violations
which require supraproportionality over the relevant probability range (see e.g.
Blavatskyy (2010)). Ultimately, it is an empirical issue whether locally or globally
subproportional functions fit better.

Polynomials are linear in the parameters and, thus, generally less flexible
than specifications that are nonlinear in the parameters. Note that second-order
polynomials demarcate the intersection of the class of quadratic utility and RDU
(see also the discussion in Masatlioglu and Raymond (2016)).

Gul (1991)’s theory of disappointment aversion, for example, implies a strictly
convex subproportional function in the context of RDU for two-outcome prospects.
Another interesting specimen is the probability weighting function discussed in
Delquié and Cillo (2006). In the context of RDU, their model of disappointment
aversion generates a subproportional second-order polynomial that is equivalent to the
one implied by Kőszegi and Rabin (2007)’s choice-acclimating personal equilibrium,
which provides an endogenous reference point (Masatlioglu and Raymond, 2016).
The same polynomial also emerges in Safra and Segal (1998)’s approach to constant
risk aversion. This concept captures the idea that a decision maker commits to a
choice long before uncertainty is resolved, and is, therefore, particularly plausible
in the context of our model. Under specific assumptions, Bordalo et al. (2012)
derive (discontinuous) context-dependent probability distortions from their salience
theory. While their concave segment is supraproportional, the convex segment is
subproportional, both of the Gul (1991) variety with 0< β < 1 and β > 1, respectively.
The psychological mechanisms underlying probability weighting, therefore, often
imply at least some extent of subproportionality.

An intermediate case is the constant-sensitivity specification suggested by
Abdellaoui et al. (2010) which is subproportional for large probabilities but exhibits
constant elasticity for small probabilities. Thus, risk tolerance increases with delay
until it hits an upper bound, staying constant afterwards. Ultimately, it is an open
question whether this feature is consistent with actual behavior, which provides a
fruitful avenue for future research. In particular, the associated discount function is
characterized by decreasing impatience for more imminent time horizons, but constant
impatience for more remote horizons. Thus, it constitutes an alternative to the quasi-
hyperbolic β-δ model.



Table E.1. Probability Weighting Functions

Probability weighting function w(p) Parameter range Elasticity∗ Shape∗∗ Reference
pα α > 1 constant convex Luce et al. (1993)
p

2−p - increasing convex Yaari (1987)

exp
(
− β(− ln(p))α

)
0 < α < 1, β > 0

increasing,
concave/convex

regressive Prelec (1998)

α = 1, β > 1 constant convex Prelec (1998)1

exp
(
−β

α (1− pα)
)

α,β > 0 increasing concave, Prelec (1998)2

regressive

(1− α ln p)−
β
α α,β > 0 increasing regressive Prelec (1998)

pα

(pα+(1−p)α)1/α
0.279 < α < 1 U-shaped regressive Tversky and Kahneman (1992)

βpα

βpα+(1−p)α
0 < α < 1, β > 0 U-shaped regressive Goldstein and Einhorn (1987)

0 < α < 1, β = 1 U-shaped regressive Karmarkar (1979)
α = 1, β < 1 increasing, convex convex Rachlin et al. (1991)

see text see text Bordalo et al. (2012)3

p+αp(1−p)
1+(α+β)p(1−p)

α > 0, β > 0 U-shaped regressive Walther (2003){
β1−αpα if (i) 0 ≤ p ≤ β

1− (1− β)1−α(1− p)α if (ii) β < p ≤ 1
0 < α,β < 1

(i) constant,
(ii) increasing

regressive Abdellaoui et al. (2010)4

p
1+(1−p)β

β > 1 increasing, convex convex Gul (1991)
p

p+(1−p)β
β > 1 increasing, convex convex Rachlin et al. (1991)

p− αp+ αp2 0 < α < 1 increasing, concave convex Masatlioglu and Raymond (2016);

Delquié and Cillo (2006); Safra and Segal (1998)5

p+ 3−3β
α2−α+1

(αp− (α+ 1)p2 + p3) 0 < α,β < 1 U-shaped regressive Rieger and Wang (2006)

p− αp(1− p) + βp(1− p)(1− 2p) α depends on β variety variety Blavatskyy (2016)6 0 for p = 0
β + αp for 0 < p < 1
1 for p = 1

0 < β < 1 ,
0 < α ≤ 1− β

increasing, concave regressive Bell (1985); Cohen (1992); Chateauneuf et al. (2007)

∗ Increasing elasticity is equivalent to subproportionality. ∗∗ An inverse-S shape means that both tails are overweighted, i.e. that the weighting function is
regressive.

(1) Equivalent to power specification w(p) = pβ .
(2) The full specification of the conditional invariant form also contains the power function (see row 1) as a special case (Prelec (1998), Proposition 4).
(3) The weighting function consists of a concave and a convex segment with a jump discontinuity in between (see text).
(4) For α > 1, β = 1 constant elasticity, convex; for α < 1, β = 0 increasing elasticity, convex.
(5) Special case of Blavatskyy (2016) with β = 0.
(6) Specific parameter constellations with β > 0 generate regressive with U-shaped elasticity.



Epper and Fehr-Duda Risk in Time 101

References

Abdellaoui, Mohammed, A Baillon, L Placido, and Peter Wakker (2011a).
“The Rich Domain of Uncertainty: Source Functions and Their Experimental
Implementation.” American Economic Review, 101, 695–723.

Abdellaoui, Mohammed, Enrico Diecidue, and Ayse Öncüler (2011b). “Risk
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