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A1. Aggregating Time and Risk

Being atemporal by construction, non-expected-utility preference models are silent on
the way time and risk are to be aggregated when both risk and delay are present. Figure
1 illustrates three principle possibilities, the portfolio, the separable and the recursive
cases.

(a) The portfolio case

Panel (a) refers to the case where the prospect P(p1, p2) is evaluated as a lottery
over consumption streams, as commonly assumed in the literature on intertempo-
ral risk preferences (see, for example, Chew and Epstein (1990)), i.e. the decision
maker computes the probability distribution of the discounted utilities of the con-
sumption streams and then evaluates this distribution according to her risk prefer-
ences. The portfolio case is discussed in detail in the manuscript where we show
that all the key AS findings can be accommodated by rank-dependent probability
weighting.

(b) The separable case

Panel (b) of Figure 1 depicts the case underlying the argument in AS. Here, subjects
treat sooner and later consumption as two separate temporal prospects that are
discounted for risk first and then aggregated over time. Recalling that v(0) = 0,



Figure 1: Different Representations of P(p1, p2)
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Panel (a): P(p1, p2) = ((ct, ct+k), p1 p2; (ct, 0), p1(1− p2); (0, ct+k), (1− p1)p2; (0, 0), (1− p1)(1− p2)). The
prospect is viewed as a lottery over consumption streams. The probability distribution corresponds to
four states of nature generated by two independent random devices.
Panel (b): P(p1, p2) = (ct, p1; 0, 1− p1) + (ct+k, p2; 0, 1− p2). The prospect is viewed as the sum of two
separate temporal prospects that are devalued for risk first and subsequently for delay.
Panel (c): P(p1, p2) = (ct + (ct+k, p2; 0, 1− p2), p1; 0 + (ct+k, p2; 0, 1− p2), 1− p1). The prospect is viewed
as a two-stage lottery where uncertainty resolves sequentially.

this procedure renders a total value of

VSEP(P(p1, p2)) =[g(p1)v(ct) + (1− g(p1))v(0)]δ(t)

+[g(p2)v(ct+k) + (1− g(p2)v(0)]δ(t + k)

=g(p1)v(ct)δ(t) + g(p2)v(ct+k)δ(t + k),

(1)

which entails the first-order condition

FOCSEP(P(p1, p2)) :
v′(ct)

v′(ct+k)
= (1 + r)

δ(t + k)
δ(t)

g(p2)

g(p1)
. (2)

If subjects are prone to atemporal common-ratio violations, i.e. if their probability
weights are subproportional, g(p2)

g(p1)
< g(λp2)

g(λp1)
holds for 0 < λ < 1 and p2 < p1.

Therefore, sooner consumption in the original conditions is higher or lower than
in the scaled-down conditions depending on the relative magnitudes of p1 and
p2. Hence, in the separable case, probability weighting can accommodate the AS
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findings in the two differential risk conditions, but not the cross-over result for
p1 = p2, for which identical behavior is predicted.

(c) The recursive case

Panel (c) in Figure 1 interprets P(p1, p2) as a two-stage prospect. If subjects evaluate
the prospect recursively,

VREC(P(p1, p2)) =g(p1)[v(ct) + g(p2)v(ct+k)δ(k)]δ(t)

+(1− g(p1))[v(0) + g(p2)v(ct+k)δ(k)]δ(t)

=g(p1)v(ct)δ(t) + g(p2)v(ct+k)δ(t)δ(k),

(3)

resulting in the first-order condition

FOCREC(P(p1, p2)) :
v′(ct)

v′(ct+k)
= (1 + r)δ(k)

g(p2)

g(p1)
. (4)

which is identical to Equation (1) if exponential discounting is assumed. Conse-
quently, in this case the recursive procedure entails the same predictions as in the
separable case which are, at least partially, at odds with the AS evidence.

To sum up: Contrary to approach (a), methods (b) and (c) predict behavior correctly
only in the differential risk conditions for subproportional probability weights, but fail
to predict the cross-over result in the baseline conditions.

A2. Time-Dependent Probability Weighting and Hyper-

bolic Discounting

In the following, we take a closer look at the predictions of time-dependent probability
weighting (Halevy, 2008; Saito, 2011) in the context of the AS experiment. In Halevy’s
model time-dependence of probability weights arises from the inherent uncertainty of
the future. If decision makers have doubts whether promised rewards will actually ar-
rive they may perceive allegedly certain future payments as risky. Furthermore, a deci-
sion maker who is prone to probability weighting will distort the subjective probability
of non-payment. Halevy shows that a specific characteristic of atemporal probability
weights, increasing elasticity,1 generates hyperbolic discounting. Epper and Fehr-Duda
1Increasing elasticity is equivalent to subproportionality.
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(2012) extend this idea to risky prospects and demonstrate that the decision maker will
appear more risk tolerant for future prospects than for present ones. However, this
mechanism is effective only if the resolution of uncertainty coincides with the timing of
payment. If uncertainty is resolved immediately the decision maker will know for sure
which one of the outcomes is supposed to arrive and, consequently, time-dependent
probability weighting solely affects allegedly certain amounts of money, i.e. it will gen-
erate hyperbolic discounting but not increasing risk tolerance.

In the AS experiment all uncertainty is indeed resolved during the experiment and,
consequently, any additional risk from inherent future uncertainty only affects discount-
ing but not risk tolerance. Therefore, time-dependent probability weights g(p, t) are
identical to the atemporal case. But since future payments are still inherently uncertain,
they are discounted by an additional factor g(1, t), which is independent of the prob-
abilities p1 and p2. In general, g(p, 0)g(1, t) 6= g(p, t) holds for the type of probability
weighting functions studied in Halevy (2008) and Epper and Fehr-Duda (2012). For ex-
ample, the appropriate first-order conditions for (p1, p2) ∈ {(1, 1), (0.5, 0.5)} are given
by

FOCTEMP(P(1, 1)) :
v′(ct)

v′(ct+k)
= (1 + r)

δ(t + k)
δ(t)

g(1, t + k)
g(1, t)

, (5)

and

FOCTEMP(P(0.5, 0.5)) :
v′(ct)

v′(ct+k)
=

 (1 + r) δ(t+k)
δ(t)

g(1,t+k)
g(1,t)

g(0.25,0)+g(0.75,0)−g(0.5,0)
g(0.5,0) if ct � ct+k

(1 + r) δ(t+k)
δ(t)

g(1,t+k)
g(1,t)

g(0.5,0)
g(0.25,0)+g(0.75,0)−g(0.5,0) if ct ≺ ct+k

(6)
The ratio of additional discount weights g(1,t+k)

g(1,t) is generally smaller than one, which
leads to a less pronounced decline of c∗t than in the standard time-independent case. All
the other predictions of the RDU model remain qualitatively unchanged.

A3. The Kihlstrom-Mirman Model and the CTB Findings

Besides RDU several other models can accommodate intertemporal risk aversion as en-
countered in the AS experiment. Bommier (2007) discusses two examples, the Kihlstrom
and Mirman (1974) model (see also Epstein and Tanny (1980)) and the class of recursive
preferences studied by Epstein (1983). Here we take a closer look at the Kihlstrom-
Mirman approach. Assuming expected utility and positing a concave transformation of
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the discounted utility of consumption streams φ(c̃t, c̃t+k) = φ(v(c̃t)δ(t) + v(c̃t+k)δ(t +
k)), with φ(0) = 0, φ′ > 0, φ′′ < 0, to model intertemporal risk aversion, an approach
also taken by Cheung (forthcoming), renders the following general first-order condition
for P(p1, p2)

FOCKM(P(p1, p2)) :
v′(ct)

v′(ct+k)
= (1 + r)

δ(t + k)
δ(t)

φ′(ct, ct+k) +
1−p1

p1
φ′(0, ct+k)

φ′(ct, ct+k) +
1−p2

p2
φ′(ct, 0)

.

It nests DEU if φ is linear. In the following, we discuss its predictions for the prototypical
baseline and differential risk conditions of the AS experiment.

• The baseline conditions: P(1, 1) versus P(λ, λ).
Inserting p1 = p2 = λ into the equation above renders for the ratio of the marginal
intertemporal utilities

φ′(ct, ct+k) +
1−λ

λ φ′(0, ct+k)

φ′(ct, ct+k) +
1−λ

λ φ′(ct, 0)
T 1 iff φ′(0, ct+k) T φ′(ct, 0). (7)

Recall from our analysis in Section 2 of the paper that optimal sooner consumption
decreases in the ratio of the marginal utilities on the right side of the first-order
condition. Comparing Equation (7) with the certain case where this ratio is equal
to one, shows that the optimal sooner consumption c∗t will be lower (higher) in
the risky condition than in the certain condition if ct � ct+k (ct ≺ ct+k) due to
the concavity of φ. Therefore, c∗t (λ, λ) is less sensitive to changes in r, intersect-
ing the consumption curve for the certain condition, qualitatively similar to the
RDU-case. The Kihlstrom-Mirman model differs from RDU in that it involves a
smooth transition from sooner to later consumption levels whereas RDU predicts
a sudden change in decision weights. Which one of the models fits better is an
empirical question that still awaits investigation. However, modeling the prefer-
ence for diversification in the spirit of Kihlstom-Mirman is based on the (clearly
refuted) assumption that atemporal risk taking conforms to expected utility. In
contrast, RDU can accommodate both, atemporal and intertemporal risk aversion.
Moreover, in the atemporal context, RDU abandons the identity of diminishing
marginal utility and risk aversion (Wakker, 1994).

• The differential risk conditions: P(1, q) versus P(λ, λq) for some 0 < λ < 1 and
some probability q < 1.
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Comparing the corresponding first-order conditions for P(1, q) and P(λ, λq) yields
the following relationships after some rearranging

c∗t (λ, λq) T c∗t (1, q) iff
φ′(ct, ct+k)

qφ′(ct, ct+k) + (1− q)φ′(ct, 0)
T

φ′(0, ct+k)

φ′(ct, 0)
.

It is interesting to note that these conditions do not depend on the scaling factor λ.
Because of the concavity of φ, φ′(ct, ct+k) < qφ′(ct, ct+k)+ (1− q)φ′(ct, 0) < φ′(ct, 0)
holds and, therefore, the left ratio of marginal utilities is always smaller than one. If
ct � ct+k holds, then φ′(ct, 0) < φ′(0, ct+k) is satisfied. In this case, the right ratio is
greater than one, implying that c∗t (1, q) > c∗t (λ, λq). In the opposite case, ct ≺ ct+k,
both sides are less than one, and it depends on φ′ as well as on q whether c∗t (1, q)
may be smaller than c∗t (λ, λq) and, hence, whether a cross-over of the consumption
curves may occur. Due to the high interest rates offered in the AS experiment, it
is likely that the discounted utility of later consumption is much greater than the
discounted utility of sooner consumption, which implies that φ′(0, ct+k)� φ′(ct, 0)
and, therefore, their ratio is much smaller than one. For values of q in the vicinity
of one, on the other hand, the left side of the equation is close to one. Consequently,
for comparatively high values of q and high interest rates, it is likely that sooner
consumption in the scaled-down condition is higher than in the original one.2 In
other words, under these specific circumstances that are likely to hold in the AS
experiment, the model predicts a cross-over in the differential risk conditions as
well and, hence, is unable to accommodate the intertemporal common-ratio effect
evident in subjects’ behavior.

A4. Probability Weighting and Intertemporal Risk Aversion

When decision makers evaluate risky consumption streams they often seem to have a
preference for diversifying consumption across time, i.e. they prefer some good and
some bad to all or nothing. Richard (1975) labeled such a preference “‘multivariate
risk aversion”, which is termed “intertemporal risk aversion” in the context of this pa-
per.3 Since discounted expected utility is additively separable it cannot accommodate
2The difference in the ratios is particularly pronounced when φ′ is convex, i.e. if the decision maker
exhibits intertemporal prudence.

3Bommier (2007) and Denuit, Eeckhoudt and Rey (2010), among others, use the term “correlation aversion”
instead of intertemporal or multivariate risk aversion.
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intertemporal risk aversion. One way of solving the problem, therefore, is to give up ad-
ditive separability, a path followed for instance by Kihlstrom and Mirman (1974), Epstein
and Tanny (1980) and Epstein (1983) (see also the discussion in A3.). In the following
we show that rank-dependent utility implies intertemporal risk aversion if the decision
maker is sufficiently pessimistic. To our knowledge, this link between intertemporal risk
aversion and probability weighting has not been noted before. Hence, RDU is a descrip-
tively valid model for atemporal decisions and, under appropriate assumptions on the
aggregation of time and risk, for intertemporal risk taking behavior as well.4

The concept of intertemporal risk aversion indicates whether an individual dislikes
consumption at different points in time to be positively correlated (Epstein and Tanny,
1980; Denuit, Eeckhoudt and Rey, 2010). Consider two different consumption levels at t,
ct, ct and two different consumption levels at t + k, ct+k, ct+k. Intertemporal risk aversion
is defined as follows (Richard, 1975; Bommier, 2007):

An individual is intertemporally risk averse if and only if, for all ct, ct, ct+k, ct+k, such
that ct > ct and ct+k > ct+k,

Pneg = ((ct, ct+k), 0.5; (ct, ct+k), 0.5) � Ppos = ((ct, ct+k), 0.5; (ct, ct+k), 0.5).

Pneg represents a lottery over consumption streams that entail one high consumption
level either sooner or later. Whatever the state of the world, one of the higher consump-
tion levels, ct or ct+k, will materialize. In Ppos, only the higher consumption levels or
only the lower consumption levels will materialize in both periods. Therefore, there is an
equal chance to end up with the worst consumption stream (ct, ct+k), an outcome many
people are averse to. Consequently, an intertemporally risk averse individual prefers the
prospect guaranteeing high consumption either sooner or later over the all-high/all-low
prospect.

According to RDU the prospect Pneg is evaluated as

VRDU(Pneg) =

{
g(0.5)[v(ct)δ(t) + v(ct+k)δ(t + k)] + (1− g(0.5))[v(ct)δ(t) + v(ct+k)δ(t + k)] or
(1− g(0.5))[v(ct)δ(t) + v(ct+k)δ(t + k)] + g(0.5)[v(ct)δ(t) + v(ct+k)δ(t + k)],

depending on the relative magnitudes of v(ct)δ(t) + v(ct+k)δ(t + k) and v(ct)δ(t) +
v(ct+k)δ(t + k). For Ppos we obtain

VRDU(Ppos) = g(0.5)[v(ct)δ(t)+ v(ct+k)δ(t+ k)]+ (1− g(0.5))[v(ct)δ(t)+ v(ct+k)δ(t+ k)].
4Chew and Epstein (1990) discuss the usefulness of rank-dependent utility for disentangling the coefficient
of relative risk aversion and the elasticity of intertemporal substitution.
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Examining the difference between these two values renders

VRDU(Pneg)−VRDU(Ppos) =

{
(1− 2g(0.5))[v(ct+k)− v(ct+k)]δ(t + k) or
(1− 2g(0.5))[v(ct)− v(ct)]δ(t).

Because ct > ct and ct+k > ct+k hold, the difference in prospect values is positive iff 1−
2g(0.5) > 0. In other words, the individual is intertemporally risk averse if g(0.5) < 0.5,
which is satisfied for representative probability weights (Fehr-Duda and Epper, 2012).
If g(0.5) > 0.5, the decision maker is intertemporally risk seeking, and if g(0.5) = 0.5,
she is intertemporally risk neutral. Therefore, RDU preferences imply intertemporal risk
aversion if the individual is sufficiently pessimistic at the probability p = 0.5.

In the context of the AS baseline conditions, intertemporal risk aversion manifests it-
self as a preference of Pneg = ((ct, 0), 0.5; (0, ct+k), 0.5) over Ppos = ((ct, ct+k), 0.5; (0, 0), 0.5).
However, in the AS experiment, subjects do not have a choice between these prospects
over consumption streams directly but evaluate

P = ((ct, ct+k), 0.25; (ct, 0), 0.25; (0, ct+k), 0.25; (0, 0), 0.25) ,

generated by the independent risks of receiving the sooner payment and later payments.
Richard (1975) shows that, in the realm of expected utility, intertemporal risk aversion
can be defined in an entirely equivalent way by positing a preference of P over Ppos:
“To emphasize the risk averse aspect of this behavior just consider an extension [...] for the
decision maker’s entire lifetime. It seems reasonable to define risk averse behavior as preferring an
independent lottery each year to one lottery for lifelong misery or happiness” (Richard (1975), p.
14). In RDU, P � Ppos requires g(0.25) + g(0.75) > 2g(0.5) to hold, whereas Pneg � Ppos

requires 2g(0.5) < 1. Both conditions are likely to hold for the average decision maker
and, hence, RDU implies intertemporal risk aversion in this case as well.
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