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Abstract A large body of experimental research has demonstrated that, on
average, people violate the axioms of expected utility theory as well as of
discounted utility theory. In particular, aggregate behavior is best charac-
terized by probability distortions and hyperbolic discounting. But is it the
same people who are prone to these behaviors? Based on an experiment
with salient monetary incentives we demonstrate that there is a strong and
significant relationship between greater departures from linear probability
weighting and the degree of decreasing discount rates at the level of individual
behavior. We argue that this relationship can be rationalized by the uncertainty
inherent in any future event, linking discounting behavior directly to risk
preferences. Consequently, decreasing discount rates may be generated by
people’s proneness to probability distortions.
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“Future income is always subject to some uncertainty, and this uncertainty
must naturally have an inf luence on the rate of time preference, or degree
of impatience, of its possessor.”

Fisher (1930)

It has long been recognized by practitioners and theorists alike that the
domains of choice under risk and over time are intimately related. In the
realm of economic theory, the dimensions of risk and time are treated as
largely independent attributes, modeled in an equivalent way (Prelec and
Loewenstein 1991): The classical models of choice, expected utility theory
(EUT) and discounted utility theory (DUT), view decision makers as maxi-
mizing a weighted sum of utilities with the weights representing either proba-
bilities or exponentially declining discount weights, respectively.

A large body of empirical evidence has challenged the validity of EUT
and DUT as descriptive models of choice, however. In the domain of risk,
one of the best documented phenomena concerns the common ratio effect:
Often, people’s preference for a smaller more probable outcome over a larger
less probable one changes in favor of the larger outcome when both outcome
probabilities are scaled down by a common factor. This pattern of behavior
constitutes a violation of the independence axiom of EUT (Kahneman and
Tversky 1979; Starmer and Sugden 1989).1 The stationarity axiom of DUT,
according to which preferences should depend on the absolute time interval
between the delivery of the objects, has met a similar fate. The common
difference effect describes the empirical regularity that indifference between
a smaller earlier payoff and a larger later payoff shifts to preference for the
larger later payoff when both payoff dates are pushed into the more remote
future by a common delay (Thaler 1981; Benzion et al. 1989).

Researchers have reacted to these anomalies by relaxing the assumptions
on the corresponding decision weights while leaving the overall separable
structure of the models intact. Violations of independence can be captured
by a suitable nonlinear transformation of the probabilities (Quiggin 1982;
Tversky and Kahneman 1992). The crucial characteristic of probability weights
that produces common ratio violations is subproportionality (Kahneman and
Tversky 1979). Subproportionality means that, for a fixed ratio of probabilities,
the ratio of the corresponding probability weights is closer to unity when the
probabilities are low than when they are high. Intuitively speaking, scaling
down the original probabilities makes them less distinguishable from each
other, thus favoring preference reversals of the common-ratio type. Viola-
tions of stationarity, on the other hand, are accounted for by giving up the
requirement of constant discount rates and allowing decreasing ones, which
has become known as hyperbolic discounting (Ainslie 1991; Laibson 1997;
Prelec 2004). These generalizations seem to perform much better at explaining

1Prominent special cases are the Allais paradox (Allais 1953) and the Bergen paradox (Hagen
1972).
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aggregate choices than do EUT and DUT (Rachlin et al. 1991; Harless and
Camerer 1994; Hey and Orme 1994; Myerson and Green 1995; Kirby 1997).
At the individual level, however, there is vast heterogeneity in observed
behavior in both decision domains (Hey and Orme 1994; Chesson and Viscusi
2000; Abdellaoui et al. 2010; Bruhin et al. 2010), and it is an open question
whether the superior fit of the generalized models is actually a manifestation
of common regularities of individual behavior, as argued for example by Prelec
and Loewenstein (1991). In their opinion, violations of independence and
stationarity are not coincidental but reflect certain fundamental principles
of prospect evaluation which govern people’s sensitivities to probability and
delay. If there is such a common driving force underlying risk taking and
discounting behavior, we should observe a significant correlation between sub-
proportionality of probability weights and hyperbolicity of discount weights at
the level of individual behavior.

In the extant empirical literature, the relationship between individuals’
attitudes towards risk and delay has been examined from various different
angles. One strand of the literature focuses on people’s risk tolerance mea-
sured independently from their degree of impatience. These studies find that
more risk averse people tend to discount the future more heavily (Leigh 1986;
Anderhub et al. 2001; Eckel et al. 2004). Discount rates are inferred directly
from choices over dated monetary amounts and, therefore, their measurement
is confounded by the curvature of the utility function. Andersen et al. (2008)
correct for utility curvature and still find a positive, but much reduced,
correlation in their predicted degrees of risk aversion and impatience. None
of the studies so far have accounted for probability weighting and, therefore,
they cannot address the question of whether departures from linear probability
weighting are systematically related to departures from exponential discount-
ing. The psychological literature has dealt with comparisons of highly reduced
forms of discounting functions for delay and probability, ignoring utility
curvature, and finds a positive correlation between both types of discounting
(Rachlin et al. 1991; Myerson et al. 2003).

Another strand of the literature investigates people’s choices when both risk
and delay are present (Keren and Roelofsma 1995; Ahlbrecht and Weber 1997;
Weber and Chapman 2005; Noussair and Wu 2006; Anderson and Stafford
2009; Baucells and Heukamp 2010; Coble and Lusk 2010). These studies
generally conclude that there are interaction effects between time and risk,
such as risk tolerance increasing with delay, which are not easily justifiable
within the frameworks of EUT and DUT. Again, probability weighting does
not feature in any of these papers. A notable exception is the contribution
by Abdellaoui et al. (2011) who estimate individual probability weights over
varying delays, but do not elicit discount functions for guaranteed payoffs.

Finally, some recent papers examine the effects of risk in the payment
date, rather than in outcome magnitude. Parallel to the findings on delayed
guaranteed outcomes, Chesson and Viscusi (2000) report discount rates to
decline with time horizon. Moreover, Chesson and Viscusi (2003) show that
aversion to timing risk is positively related to ambiguity aversion, suggesting
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that uncertainty may be processed similarly in both the dimensions of time
and risk. In a follow-up study Onay and Öncüler (2007) argue that the
prevalence of timing risk aversion, which runs against the predictions of EUT,
can be accommodated within a rank-dependent model involving probability
weighting. They do not test their conjecture empirically, however.

This brief review of the literature shows that, to the best of our knowledge,
there is no previous study that investigates the link between individuals’ prob-
ability weights and discount weights. While evidence of hyperbolic discount-
ing is occasionally reported, simultaneous estimates of individual probability
weights are usually not provided. This lack may be due to the fact that a
comparatively rich data set, and for that matter also a fairly sophisticated
estimation strategy, is needed to be able to disentangle utility curvature and
probability weighting.

In order to address the issue of a relationship between subproportionality
and hyperbolicity, we conducted an experiment with salient monetary incen-
tives, which exhibits a number of distinguishing features: First, the experiment
generated data rich enough to be able to estimate individual probability
weighting functions and relate them to the same subjects’ revealed discount
rates. Second, in contrast to many previous discounting experiments, every
single subject got paid for her intertemporal choices, involving substantial
payoffs, in an incentive compatible manner. Third, we kept transaction costs
equal across different payment dates in order to preclude confounding effects.
Finally, we controlled for utility curvature.

We present the following experimental results. First, we show that the
degree of subproportionality is highly significantly associated with the strength
of decreasing discount rates. The curvature of the utility function, however,
seems not to be directly related to their decline. Second, estimation results
are robust to controlling for socioeconomic characteristics, such as gender,
age, experience with investment decisions and cognitive abilities. In fact, the
only variable associated with decreasing discount rates turns out to be the
degree of subproportionality of probability weights, which explains a—by
any standard—large percentage of the variation in the extent of the decline.
Moreover, all our results are insensitive to model specification.

Our findings demonstrate that, consistent with the hypothesis of a com-
mon underlying factor, departures from linear probability weighting are sig-
nificantly correlated with departures from exponential discounting. However,
the relationship between risk taking and time discounting behavior cannot
be attributed to one of the candidate factors discussed in the literature:
Cognitive skills measured by the Cognitive Reflection Test (Frederick 2005) do
not contribute to explaining the correlation between subproportionality and
hyperbolicity.

We favor an alternative hypothesis, namely, that the correlation is driven
by a natural link between the domains of time and risk (Halevy 2008; Saito
2011): Arguably, only immediate consequences can be totally certain whereas
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delayed ones are uncertain by their very nature. For instance, a promised
reward may, due to unforeseen circumstances, materialize later or turn out
to be smaller than expected, or sudden illness or death may keep the decision
maker from collecting her reward. For these reasons, future consequences are
inextricably associated with uncertainty, implying that the decision maker’s
valuation of delayed outcomes not only depends on her pure time preference,
i.e. her preference for immediate utility over delayed utility, but also on her
perception of uncertainty and, consequently, on her risk preferences. If the
probability of receiving a promised reward gets transformed like any other
probability, the reward gets devalued by an additional factor which equals this
subjectively weighted probability. Moreover, if the decision maker is prone to
common ratio violations, i.e. if her probability weights are subproportional,
this additional discount weight declines at a decreasing rate: Any further delay
by another unit of time corresponds to a scaling down of the probability
of receiving the reward to which the decision maker becomes progressively
insensitive. Hence, total discount weights decline at a decreasing rate, i.e.
hyperbolically, even if the pure rate of time preference is constant, and the
effect is more pronounced for comparatively more subproportional probability
weights. Figuratively speaking, hyperbolic discounting is driven by viewing the
uncertain future through a warped lens, produced by systematic distortions of
probabilities.

This theoretical framework not only organizes our experimental findings
but also accounts for previous evidence of interactions of time and risk. A
number of studies detected preference reversals when either risk is added to
temporal prospects (Baucells and Heukamp 2010) or delay is added to simple
risky prospects (Keren and Roelofsma 1995; Weber and Chapman 2005).

Our analysis suggests that institutionally generated uncertainties, such as
lack of contract enforcement and weak property rights, may induce extreme
short-run impatience even if people’s pure rate of time preference is constant
and relatively low. This insight is important because it implies that revealed
behavior may be predominantly driven by environmental factors rather than
by the underlying preferences themselves and, consequently, may be amenable
to economic policy. While uncertainty may be an important channel through
which hyperbolicity of discount rates is generated there may be other sources
of hyperbolic discounting behavior as well. For instance, pure time preferences
may be hyperbolic per se, as could be argued for addictive behavior. And when
visceral motives, such as hunger or lust, come into play, uncertainty may not be
the dominant dimension decision makers are concerned about. An excessive
preference for the present may then be driven by factors other than potential
disappearance of the object of desire.

The remainder of the paper is structured as follows: In Section 1 we describe
the experimental design and procedures. Section 2 outlines our approach to
estimation. Section 3 presents our results. Section 4 discusses our hypothesis
on the role of risk preferences in time discounting. Section 5 concludes.
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1 Experimental design

The experiment took place at the Institute for Empirical Research in Eco-
nomics (IERE), University of Zurich, in May 2006. Participants were recruited
from the IERE subject pool, which consists of students from all fields offered
at the University of Zurich and the ETH Zurich. In total, we analyzed
112 subjects’ responses.2 The experiment consisted of two main parts, one
dedicated to eliciting certainty equivalents for non-delayed risky prospects,3

the other one to eliciting future equivalents and their corresponding imputed
discount rates for temporal prospects involving guaranteed payments.4

We used similar procedures to elicit certainty equivalents and discount rates
in order to economize on subjects’ cognitive effort. For both types of tasks
we implemented choice menus containing a list of 20 varying alternatives
which had to be judged against a fixed option. To familiarize subjects with
the nature of the procedure the instructions contained examples and trial
problems. Besides a show up fee of Swiss Francs (CHF) 10 (CHF 1 ≈ USD
0.8 at the time of the experiment), each subject was paid according to one of
her risky choices and one of her temporal choices selected randomly at the
very end of the experiment. Subjects received their compensation for the risky
choices and the show-up fee in cash immediately after completion of all the
tasks. The compensation for their intertemporal choices was paid out to them
at the respective dates when they cashed in vouchers issued to them at the end
of the experiment. Payment modalities are described in detail below. Subjects
could work at their own speed. On average, it took them 1.25 hour to complete
the experiment, including a socioeconomic questionnaire presented after the
choice tasks.

1.1 Elicitation of certainty equivalents

Since the objective of the risk task was to obtain data on the basis of which
individual probability weights could be estimated, a fairly large number of
observations per person was needed. To elicit individual lottery evaluations,
subjects were presented with 20 choice menus, each one involving a specific
binary lottery L = (x1, p; x2), with x1 > x2 ≥ 0, labeled Option A in Fig. 1.
Option B in the choice menu represented the guaranteed alternatives, ranging

2We omitted six subjects’ responses from our analysis. Four subjects reported that they would
not be able to cash in their delayed payments at the respective payment dates. Three of them
would have been on vacation then, the fourth person had planned a long visit abroad. Hence, their
choices were not informative of their time preferences. Concerning the remaining two subjects we
could not disentangle utility effects from probability weighting effects. Nonetheless, our results do
not change when we include these two individuals in the data set.
3The risk data was also used in Bruhin et al. (2010).
4Instructions are available upon request. The experiment was programmed and conducted with
the software z-Tree (Fischbacher 2007).
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Option A Your Choice
Option B

(guaranteed reward)

1

Gain
of CHF 50 with a 

probability of
75%

and

Gain
of CHF 10 with a 

probability of
25%

A B CHF 50

2 A B CHF 48

3 A B CHF 46

4 A B CHF 44

5 A B CHF 42

6 A B CHF 40

7 A B CHF 38

8 A B CHF 36

9 A B CHF 34

10 A B CHF 32

11 A B CHF 30

12 A B CHF 28

13 A B CHF 26

14 A B CHF 24

15 A B CHF 22

16 A B CHF 20

17 A B CHF 18

18 A B CHF 16

19 A B CHF 14

20 A B CHF 12

Fig. 1 Choice menu—risk

from the higher lottery outcome x1 to the lower outcome x2. Every subject had
to choose her preferred option in each row of the choice menu. In Fig. 1, a
hypothetical subject prefers all guaranteed payments larger than CHF 36 to
the stated lottery, and prefers the lottery in the remaining rows. This subject’s
valuation of the lottery, her certainty equivalent CE, is calculated as the
arithmetic mean of the two amounts next to her indifference point, amounting
to CHF 37 in the example here. The set of lotteries, listed in Table 1, included
a wide range of outcomes and probabilities. Every subject was confronted
with this set of lotteries once. The choice menus appeared in an individualized
random order.

At the end of the experiment, after the subject had completed all the
tasks, one row of one choice menu was randomly selected for payment. If the
subject had opted for the lottery there, her decision was played out for real.
If the subject had opted for the guaranteed payoff, the respective amount was
paid out to her. On average, subjects earned CHF 37.22 in cash for the risk
task, including the show-up fee of CHF 10, to be paid out immediately. Cash
payments were considerably higher than the local student assistant’s hourly
wage.
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Table 1 Risky prospects (x1, p; x2)

p x1 x2 p x1 x2

0.1 20 10 0.25 50 20
0.5 20 10 0.5 50 20
0.9 20 10 0.75 50 20
0.05 40 10 0.95 50 20
0.25 40 10 0.05 150 50
0.5 40 10 0.5 10 0
0.75 40 10 0.5 20 0
0.95 40 10 0.05 40 0
0.05 50 20 0.95 50 0
0.1 150 0 0.25 40 0

Payoffs x1 and x2 are stated in Swiss Francs (CHF)
p denotes the probability of x1 materializing

1.2 Elicitation of discount rates

Using a format similar to the risk task, we elicited individual discount rates
for temporal prospects T = (x, t), with x > 0, over payments x delayed by t
months. The choice menus, designed as in Fig. 2, contained 20 binary choices
each.5 Subjects had to choose between a guaranteed payment PE of CHF 60
the next day (Option A) and a guaranteed later payment x (Option B), delayed
by two months or four months, respectively. The varying alternatives x were
sorted in descending order from the highest amount to the lowest amount, in-
corporating an interest payment at a simple annualized rate of δt ∈ [0%, 95%]
over the corresponding time interval [0, t].6 These rates were exhibited in the
right-most column of the choice menu. The present amount of CHF 60 and
the range of interest rates were chosen to provide salient incentives, so that
deferring the reward was actually worthwhile. The arithmetic mean of the two
monetary amounts next to the indifference point on the choice menu provided
the imputed discount rate δt. The hypothetical subject in Fig. 2, for instance, is
indifferent between CHF 60 and CHF 70.50, implying a discount rate of 52.5%
per annum.

We applied a similar random payment method in the time task as in the risk
task: One of each subjects’ choices was paid out for real at the corresponding
payment date. Average payoffs for the time task amounted to CHF 64.34.
Therefore, total average payments for both risk and time tasks summed to
more than four times students’ opportunity costs, measured by the student
assistants’ hourly wages.

5A similar design was proposed by Coller and Williams (1999).
6For convenience of notation we use “0” to denote the day after the experiment. Consequently,
PE is labeled “present equivalent”.
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Option A
payment tomorrow

Your Choice
Option B

payment in 4 months + 1 day

1

Amount
of CHF 60

A B CHF 79 95%

2 A B CHF 78 90%

3 A B CHF 77 85%

4 A B CHF 76 80%

5 A B CHF 75 75%

6 A B CHF 74 70%

7 A B CHF 73 65%

8 A B CHF 72 60%

9 A B CHF 71 55%

10 A B CHF 70 50%

11 A B CHF 69 45%

12 A B CHF 68 40%

13 A B CHF 67 35%

14 A B CHF 66 30%

15 A B CHF 65 25%

16 A B CHF 64 20%

17 A B CHF 63 15%

18 A B CHF 62 10%

19 A B CHF 61 5%

20 A B CHF 60 0%

Fig. 2 Choice menu—time

Since our objective was to elicit discount rates over guaranteed payments,
we took special care with the payment procedure: First, every single subject
got paid for one of her intertemporal choices, all of which entailed a payment
of the same order of magnitude. Not paying off everyone may render the
stochastic nature of the experimental earnings salient and interfere with the
objective of eliciting discount rates over guaranteed amounts of money. The
second issue concerns the credibility of payment. In order to control for
uncertainty arising from subjects’ doubts about experimenter reliability, an
official voucher of the Swiss Federal Institute of Technology was issued to
them. This payment method was explained in detail in the instructions, and
a specimen of the voucher was included in the instruction set. A third possibly
confounding factor are transaction costs. Transaction costs should be the same
regardless of the payment date in order to avoid inducing present bias resulting
from immediately available cash payments. Therefore, every subject had to
make a trip to the cash desk to collect her earnings for the discounting task.7

7People entitled to payoffs the next day were issued vouchers immediately after the experiment.
All the others received official certificates of indebtedness after the experiment. The vouchers
themselves were sent to them by registered mail several days before they could cash them in, so
they did not have to worry about forgetting encashment or misplacing their vouchers.
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2 Econometric specification

The data elicited in the experiment provide two types of main variables: cer-
tainty equivalents CE for risky prospects, and discount rates δt imputed from
observed present equivalents PE for temporal prospects. We first discuss our
econometric approach to risky choice and, subsequently, describe the method
employed to test for a link between subproportionality and hyperbolicity.

2.1 Behavior under risk

Modeling decisions under risk encompasses two components, a model of
behavior on the one hand, and assumptions regarding decision errors on the
other hand. Risk taking behavior is modeled by rank dependent utility theory
(RDU).

According to RDU, an individual values a two-outcome lottery L =
(x1, p; x2), where x1 > x2 ≥ 0, by w(p)u(x1) + (1 − w(p))u(x2). The function
u(x), with u(0) = 0 and u′(x) > 0, describes how monetary outcomes x are
subjectively valued. The function w(p) assigns a subjective weight to every
outcome probability p, with w(0) = 0, w(1) = 1, and w′(p) > 0. The deci-
sion maker’s predicted certainty equivalent ĈE for this lottery can then be
written as

ĈE = u−1
[
w(p)u(x1) + (1 − w(p))u(x2)

]
. (1)

In order to make RDU operational, we have to assume specific functional
forms for the utility function u(x) and the probability weighting function w(p).
Given our objective of describing individual behavior, we choose flexible
functional forms for u as well as for w. A natural candidate for utility u is
a power function. In its extensive form, as discussed by Wakker (2008), u is
modeled as8

u(x) =
⎧
⎨

⎩

xη if η > 0,

ln(x) if η = 0,

−xη if η < 0.

(2)

A variety of parameterizations of probability weighting functions w(p)

have been proposed in the literature (Karmarkar 1979; Lattimore et al. 1992;
Tversky and Kahneman 1992). Since our primary interest lies in common
ratio violations we focus on the characteristic of subproportionality. Ex-
pressed formally (Prelec 1998), subproportionality holds if 1 ≥ p > q > 0 and
0 < λ < 1 implies the inequality

w(p)

w(q)
>

w(λp)

w(λq)
. (3)

8Note that ln(x) is not defined for x = 0. Therefore, estimation is carried out after shifting all
outcomes by one unit of money (cmp. Wakker (2008), p.1335).
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As we rely on subproportionality as the crucial characteristic of the prob-
ability weighting function, to be estimated for each single individual, we
adopt the flexible and empirically well-founded two-parameter specification
suggested by Prelec (1998),

w(p) = e−β(− ln p)α . (4)

For α < 1, the function is subproportional everywhere, with the parameter α

measuring the degree of subproportionality.9 A smaller value of α reflects a
more subproportional curve, departing more strongly from linear weighting.
Therefore, this specification enables us to rank individuals according to their
proneness to common ratio violations. The second parameter, β > 0, is a net
index of convexity in that increasing β increases the convexity of the function
without affecting subproportionality (Prelec (1998), p.505). Linear weighting
is characterized by α = β = 1.

With regard to error specification we have to reconsider our measurement
procedure. In the course of the experiment, an individual’s risk taking behavior
was captured by her certainty equivalents CEl for a set of 20 different lotteries
Ll = (x1l, pl; x2l), l ∈ {1, . . . , 20}. Since RDU explains deterministic choice,
actual certainty equivalents CEl are likely to deviate from the predicted
certainty equivalents ĈEl by a stochastic error εl, which has to be taken
account of. Therefore, we assume that the observed certainty equivalents CEl

can be expressed as CEl = ĈEl + εl, with εl being normally distributed with
zero mean.10

Concerning the error variance, we need to account for heteroskedasticity:
For each lottery subjects had to consider 20 guaranteed outcomes, equally
spaced throughout the lottery’s outcome range x1l − x2l. Since the observed
certainty equivalent CEl is calculated as the arithmetic mean of the smallest
guaranteed amount preferred to the lottery and the subsequent guaranteed
amount, the error is proportional to the outcome range. Therefore, the
standard deviation νl of the error term distribution has to be normalized by
the outcome range, yielding νl = ν(x1l − x2l), where ν denotes an additional
parameter to be estimated. In total, therefore, four parameters per subject
were estimated by maximum likelihood: the curvature of the utility function
η, subproportionality and convexity of the probability weighting function α

and β, as well as the normalized standard deviation of the decision error
parameter ν.

9Prelec (2000) even uses the term “Allais paradox index” (p.78).
10Since CE is calculated as the arithmetic mean of two neighboring amounts in the choice menu
it possibly contains some measurement error. As CE is the dependent variable in the model a
measurement error does not pose a problem other than potentially increasing noise.
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2.2 Behavior over time

Subjects’ responses to the intertemporal choice tasks in the experiment pro-
vided us with measurements of discount rates δ2 and δ4, imputed from the
intertemporal tradeoffs between present equivalents PE and payments x
delayed by two and four months, respectively. However, the true underlying
discount weights D(t) are defined in terms of utilities, not payoffs.11 For a tem-
poral prospect T = (x, t), true discount rates are inferred from the indifference
relation u(PE) = D(t)u(x). Measured discount rates, therefore, deviate from
the underlying true rates unless u is linear. While in our specification utility
curvature affects the level of discount rates but cannot, by itself, induce their
decline, it may have a confounding effect on the magnitude of the change in the
measured discount rates 	δ = δ2 − δ4: In the presence of nonlinear probability
weighting, 	δ gets amplified by the concavity of the power utility function
(see Appendix A.4). Specifically, the more concave u, the larger the measured
difference in the discount rates 	δ if w(p) is not linear. Therefore, we control
for the degree of concavity η in the regression model.

2.3 Regression model

We investigate the hypothesized relationship between probability weighting
and changing discount rates by regressing the difference between the imputed
discount rates δ2 and δ4, 	δ, on a vector of regressors c. In the base model,
Model 1, the vector c consists of a constant and the individuals’ estimated risk
preference parameters: η captures concavity of the utility function, α captures
subproportionality of the probability weighting function, and β its convexity.
If there is a link between subproportionality and hyperbolicity, we expect
to find a negative correlation between subproportionality α and the extent
of the decline in discount rates 	δ. Additionally, we estimate an extended
version of the base model, Model 2, by controlling for a set of individual
characteristics. In particular, these controls comprise gender (labeled Female),
age (Age), the logarithm of disposable income per month (Log-Income), a
binary variable indicating whether the subject is familiar with investment
decisions (Experience) as well as the test score for the Cognitive Reflection Test
(CRT) (Frederick 2005).12 This three-question test measures specific aspects
of cognitive ability which were found to be strongly correlated with risk taking
and discounting behavior.

11We assume that the utility of money is a general cardinal function which applies to risky as well
as to delayed payoffs. A theoretical justification for this assumption is provided by Wakker (1994),
empirical support by Abdellaoui et al. (2010).
12Summary statistics of the controls are included in Appendix E, Table 4.
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Unlike the exemplary choice pattern displayed in Fig. 2, a decision maker
may have opted for the same option in all rows of the choice menu, which
results in a censored observation. In particular, she may have always preferred
the smaller sooner option, indicating that her discount rate may lie beyond
the maximum value of 95%.13 As a consequence, the difference between the
observed discount rates δ2 and δ4 is affected by censoring as well. As ordinary
least square (OLS) may yield biased estimates in this case, we account for this
issue by a censored regression model, described in detail in Appendix B. The
model has the following form:

	δ∗
i = ci (γ2 − γ4)︸ ︷︷ ︸

	γ

+ e2,i − e4,i︸ ︷︷ ︸
	ei

, (5)

where 	δ∗
i specifies the true, but potentially unobserved, difference between

δ2 and δ4 for individual i, i ∈ {1, . . . , 112}. The error term 	ei is normally dis-
tributed with mean zero and variance σ 2. The interpretation of the regression
coefficients 	γ is equivalent to those of OLS regression, also displayed in the
regression output (see Table 3).

3 Results

In the following section we analyze the raw data on risk taking behavior and
time discounting, and present the estimates for subjects’ probability weights.
Finally, we examine the relationship between subjects’ sensitivities with re-
spect to changes in probability and delay.

3.1 Descriptive analysis

For the domain of risk taking, Fig. 3 summarizes observed behavior by the
median relative risk premia RRP = (EV − CE)/EV, where EV denotes
the expected value of a lottery’s payoff and CE stands for the observed
certainty equivalent. RRP > 0 indicates risk aversion, RRP < 0 risk seeking,
and RRP = 0 risk neutrality. The median relative risk premia, sorted by
the probability p of the higher gain, show a systematic relationship between
aggregated risk attitudes and lottery probabilities: Subjects’ choices display
the familiar pattern, i.e. they are risk averse for high-probability gains, but
risk seeking for low-probability gains, supporting the existence of probability
distortions.

13A decision maker may also always prefer the later larger option. In this case, we assume a
discount rate of 0%. The number of observations at the boundary of the choice menu are listed in
Table 5 of Appendix E.
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Fig. 3 Median relative risk
premia (RRP). The bars
depict the dependence of
observed relative risk premia
(RRP) on level of
probability.
RRP = (EV − CE)/EV,
where RRP > 0 indicates risk
aversion, RRP < 0 risk
seeking and RRP = 0 risk
neutrality
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As far as intertemporal choices are concerned, people’s average behavior
exhibits decreasing discount rates, i.e. subjects discount less remote outcomes
more strongly than more remote ones: The first column in Table 2 reveals
that the discount rates imputed from subject’s choices decline on average
by 7 percentage points per annum when the time horizon is extended from
two months to four months. The average data veil heterogeneity as well as
the extent of decreasing discount rates, however. Whereas the majority of
approximately 54% of all subjects exhibit decreasing discount rates over time,
	δ > 0 (second column), about 29% exhibit constant discount rates (third
column), and the residual group reveals increasing discount rates (fourth
column). Average discount rates of subjects with decreasing discount rates
amount to δ2 = 47% p.a. and δ4 = 31% p.a., respectively, reflecting a much
greater change than do the overall averages.14

3.2 Risk preference parameters

Whereas one of our central variables, change in discount rates 	δ, is directly
observable, the other one, departure from linear probability weighting, has to
be estimated from our data on certainty equivalents.

Individual risk preference parameters η, α and β were estimated on the
basis of the econometric model discussed in Section 2.1. As Table 2 reveals,
the average values of the curvature parameter η of the utility function reflect
slight concavity or linearity. The average subproportionality index α amounts
to 0.505, indicating a pronounced departure from linear probability weighting
in line with previous findings (Tversky and Kahneman 1992; Gonzalez and Wu
1999; Abdellaoui 2000). The average estimates for β lie in the vicinity of one,
implying that the respective curves intersect the diagonal at about p = 1/e. 15

14The distributions of the observed discount rates are shown in Appendix C.
15Histograms of the parameter distributions are included in Appendix D.



J Risk Uncertain (2011) 43:169–203 183

Table 2 Average discount rates and risk parameters

All Subjects with
100% 	δ > 0 	δ = 0 	δ < 0

53.9% 29.2% 16.9%

δ2 0.368 0.465 0.213 0.328
(0.023) (0.029) (0.045) (0.058)

δ4 0.299 0.307 0.213 0.418
(0.020) (0.025) (0.045) (0.068)

	δ 0.070 0.157 0 −0.090
(0.012) (0.015) (0.019)

η 0.873 0.808 0.948 0.953
(0.032) (0.046) (0.074) (0.072)

α 0.505 0.426 0.574 0.634
(0.021) (0.027) (0.040) (0.063)

β 0.974 0.936 1.064 0.940
(0.026) (0.036) (0.068) (0.045)

Observations 89 48 26 15

The table lists average observed discount rates δ2 and δ2 and estimated risk parameters η, α and
β (standard errors in parentheses). δ2 (δ4) denotes the imputed discount rate for the two (four)
month delay, and 	δ = δ2 − δ4. η is the (power) utility parameter (see Eq. 2). α is an index for
subproportionality of the Prelec probability weighting function and β an index for its convexity.
23 subjects were excluded from the descriptive statistics due to censoring

The overall picture revealed by our data is consistent with the typical em-
pirical findings: On average, subjects systematically violate linear probability
weighting and constant-rate discounting. But the central question, namely
whether the degree of subproportionality of probability weighting is associated
with hyperbolicity of discounting behavior at the level of the individual has yet
to be answered.

3.3 Relationship between probability weights and hyperbolic discounting

A first indication of a systematic relationship between probability weighting
and discounting can be found in Table 2. The average estimated subpropor-
tionality index α varies substantially across discounting types and exhibits a
systematic pattern: α is lowest for the group with decreasing discount rates and
highest for the group with increasing discount rates.

This finding is confirmed by the estimates of the regression models. Table 3
displays the results derived by OLS as well as by the censored regression
method. Inspection of the coefficients indicates that censoring seems not to
be an important problem: After omitting the 23 censored observations, OLS
yields coefficients very close to the estimates of the censored regression model.
Furthermore, both specifications (Models 1 and 2) lead to the same conclusion:
Subproportionality of probability weighting is significantly associated with
decreasing discount rates 	δ. Table 3 shows that, in line with our conjecture,
the estimated coefficient of α is negative, amounting to approximately −0.2.



184 J Risk Uncertain (2011) 43:169–203

Table 3 Regression results

Dependent variable: 	δ (	δ∗)
OLS Censored
Model 1 Model 2 Model 1 Model 2

Intercept 0.226∗∗∗ 0.279 0.247∗∗∗ 0.321
(0.063) (0.228) (0.057) (0.225)

η 0.018 0.002 −0.006 −0.022
(0.042) (0.043) (0.039) (0.041)

α −0.205∗∗∗ −0.220∗∗∗ −0.185∗∗∗ −0.203∗∗∗
(0.066) (0.074) (0.062) (0.075)

β −0.070 −0.040 −0.074 −0.045
(0.067) (0.068) (0.060) (0.063)

Female −0.012 −0.011
(0.031) (0.032)

Age −0.001 −0.002
(0.007) (0.007)

Log-Income −0.013 −0.012
(0.024) (0.023)

Experience 0.015 0.020
(0.032) (0.033)

CRT 0.021 0.021
(0.017) (0.017)

σ̂ 0.123 0.124 0.084 0.082

R2 or (LogLik) 0.137 0.170 (48.693) (51.123)
Observations 89 89 112 112
Parameters 4 9 9 19

The table presents estimation results for the ordinary least square model (OLS; censored
observations were omitted) and the censored regression model. It shows whether and to what
extent risk preference parameters η, α, β and personal characteristics explain the difference in
imputed discount rates 	δ = δ2 − δ4. CRT denotes the test score for the Cognitive Reflection Test
(Frederick 2005), a three-item test measuring specific aspects of cognitive ability. Standard errors
(in parentheses) are obtained by the bootstrap method with 10,000 replications. Bootstrapping
accounts for the fact that the regressors α, β and η are estimated quantities

All the respective estimates are significant at the 1%-level and remain robust
to inclusion of additional controls. The effect is not only highly significant,
it is also quite substantial: A decrease in the subproportionality index α by
0.1 is associated with an increase in 	δ by 2 percentage points per annum.
In particular, the decline in discount rates is only related to the degree of
subproportionality, but not to the index of convexity β. We obtained the same
order of magnitude for the coefficient of α when we restricted β to be equal to
one. Regression coefficients and their standard errors also remain stable when
either η or β are deleted from the list of regressors.16

16Moreover, it can be shown that estimates are totally robust to alternative parameterizations of
the probability weighting curve as well. Results are available upon request.
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The coefficients of the utility parameter η are not statistically different from
zero, either.17 This result is consistent with our hypothesis that utility curvature
per se does not impact the extent of decreasing discount rates. Furthermore,
none of the other individual characteristics show a significant effect.18

An F-test comparing the OLS Model 1 with Model 2 renders a p-value
of 0.670, favoring the more parsimonious Model 1, as the controls do not
substantially contribute to explaining the variance in 	δ.19 Furthermore, the
regression models explain a rather large fraction of total variance: Model 2, for
instance, yields an R-squared value of 17%.20 These findings present conclu-
sive evidence that comparatively more subproportional probability weighting
is associated with a stronger decline in discount rates.

4 Discussion

The strong and significant correlation between subproportionality of prob-
ability weighting and extent of hyperbolic discounting begs the question of
whether this relationship can be explained in causal terms. In principle, there
are three pathways through which correlation could be generated. First, the
tendency towards hyperbolic discounting could cause distortions in probability
weights. Since, in experiments, estimates of probability weights are generally
based on atemporal choices, i.e. when there is practically no time delay be-
tween choice and payment, this possibility can be effectively ruled out. Second,
the direction of causality could work the other way round, with proneness to
probability distortions inducing hyperbolic discounting. Finally, there could
be a third factor driving both types of departures from the standard model
predictions. We will discuss the latter possibility first and then turn to the
second alternative.

Since the common ratio effect and the common difference effect pertain
to diminishing sensitivity towards probability and delay, respectively, similar
cognitive processes may govern the evaluation of risky and delayed outcomes.
A natural candidate for a common factor driving both processes is cognitive
abilities. Several papers have looked into the relationship between cognitive
abilities and risk tolerance on the one hand, and between cognitive abilities
and patience on the other hand (Frederick 2005; Benjamin et al. 2006; Dohmen
et al. 2007). Generally, they conclude that better cognitive abilities tend
to be associated with higher risk tolerance as well as higher patience. For

17Nor does an interaction term α × η contribute to explaining variation in 	δ.
18While not significantly different from zero, coefficients exhibit the expected signs: Females have
a slightly more subproportional weighting curve, consistent with previous findings (Fehr-Duda
et al. 2006). Both experience with investment decisions and high CRT scores are associated with
smaller departures from linearity.
19The same is the case when the two censored models are compared. A likelihood ratio test of
Model 2 against Model 1 renders a p-value of 0.9.
20When regressing 	δ exclusively on the socioeconomic variables, R-squared amounts to 3.9%.
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instance, Frederick (2005) finds that students with high Cognitive Reflection
Test scores gamble significantly more often that do the low CRT group, and
exhibit lower imputed discount rates, albeit not for choices involving longer
time horizons. These previous findings seem to conflict with the insignificant
coefficient of CRT in Table 3. Since CRT is not correlated with α,21 the lack
of correlation between CRT and 	δ indeed suggests that CRT scores cannot
explain the variance in the hyperbolicity of discount rates. However, we are
concerned with sensitivities towards changes in probability and delay and not
with measures of average risk aversion and impatience, the focus of previous
research. Of course, there could be other factors than cognitive abilities,
or aspects of cognitive ability not captured by CRT scores, that drive the
correlation between subproportionality and hyperbolic discounting. Clearly,
this possibility cannot be ruled out and needs further exploration.

Finally, we discuss the last one of our options, direct impact of subpropor-
tionality on hyperbolicity of discounting. Many authors have noted before
that “[a]nything that is delayed is almost by definition uncertain” (Prelec
and Loewenstein 1991, p.784). For instance, a promised reward may, due to
unforeseen circumstances, materialize later or turn out to be smaller than
expected, or death may keep the decision maker from collecting her reward
at all. For these reasons, future consequences are inextricably associated
with uncertainty, implying that the decision maker’s valuation of temporal
prospects not only depends on her pure time preference, i.e. her preference for
immediate utility over delayed utility, but also on her perception of uncertainty
and, consequently, on her risk preferences. In other words, uncertainty drives
a wedge between pure time preferences and time discounting.

If this account is an accurate description of intertemporal choice it has far
reaching implications for observed discounting behavior, the most obvious one
being that behaviorally revealed discount rates will be higher than the rate of
pure time preference as they include a risk premium. Not surprisingly then, un-
certainty has been identified to be an important confound in the measurement
of time preferences, which may, at least partly, explain the notoriously high
discount rates found in empirical studies (Frederick et al. 2002). The story does
not stop here, however. If risk preferences influence time discounting, then
people’s proneness to probability weighting has to be taken into account as
well. Recent contributions have examined the impact of nonlinear probability
weighting on discounting behavior theoretically (Halevy 2008; Saito 2011).
Halevy, motivated by the interaction effects between time and risk found by
Keren and Roelofsma (1995) and Weber and Chapman (2005), is concerned
with convex probability transformations that can accommodate the certainty
effect inherent in the classical Allais paradox. We focus on the more general
case of common ratio violations which can be modeled by subproportional
probability weights. Subproportionality is not confined to convex functions but
may also be present in inverse S-shaped probability transformations, which

21The Pearson correlation coefficient amounts to −0.0049 (p-value 0.964).
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organize a large part of the empirical evidence. In the following, we show
that the degree of subproportionality of probability weights indeed predicts
the extent of decreasing discount rates. Furthermore, we derive comparative
static results with respect to degree of uncertainty and exemplify the model
predictions by graphical illustrations.

4.1 A model of discounting: the warped lens

If the future is perceived as uncertain, an allegedly guaranteed delayed
outcome T = (x, t) is effectively evaluated as a risky prospect. Suppose that
any future payment is perceived to materialize with a constant per-period
probability of contract survival s, 0 < s ≤ 1. Consequently, T is evaluated as
L = (x, st), rendering x with probability st and zero otherwise.

As far as the rate of pure time preference is concerned, we adopt the
conventional assumption: the rate of pure time preference is characterized by a
constant per-period rate r ≥ 0, resulting in a pure time discount factor ρ equal
to e−r.

These assumptions imply that the present equivalent PE of the future
payment x, such that the decision maker is indifferent between PE and x, is
defined by

u(PE) = w(st)ρ tu(x). (6)

The effective discount weight D(t) at delay t equals the weight attached to u(x),
i.e.

D(t) = w(st)ρ t, (7)

which depends not only on the pure rate of time preference r, but also on the
probability of contract survival s as well as on the shape of the probability
weighting function w. Clearly, if w is linear, D(t) declines exponentially
irrespective of the magnitude of s. If 0 < s < 1, the resulting discount weight
is lower than for s = 1, implying that uncertainty per se increases the absolute
level of discount rates, but cannot account for discount rates declining over
time. In fact, due to uncertainty, discounting would be observed even for a
zero rate of pure time preference. If, however, w is nonlinear and 0 < s <

1, the component w(st) distorts the discount weight: As shown formally in
Appendix A.1, subproportionality of w generates hyperbolicity of w(st) in
t and, consequently, decreasing discount rates if the future is perceived as
uncertain. Metaphorically speaking, the decision maker, when looking into
the future, perceives delayed events through the warped lens of probability
distortions. A natural extension of this insight is that higher degrees of subpro-
portionality induce more strongly declining discount rates (see Appendix A.2).
The effective discount weight D(t) also depends on the level of uncertainty s.
Higher uncertainty implies more strongly declining discount rates as well. A
formal proof appears in Appendix A.3.
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In order to illustrate the predictions of our model, which hold for any
subproportional probability weighting function, we demonstrate the compara-
tive static effects of subproportionality α and uncertainty s graphically, using
Prelec’s specification. Figure 4 shows the comparative static effects of varying
α, Fig. 5 is dedicated to the effects of varying s.
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Fig. 4 Effects of subproportionality on discounting. The three panels illustrate the effect of
varying degrees of subproportionality α. Panel a shows Prelec probability weighting curves for
different values of α ∈ {0.2, 0.5, 1}: The lower is α the greater is subproportionality and the greater
is the departure from linearity. Panel b shows, for each of the three cases of probability weighting,
the effective discount function resulting from the model in Eq. 6: exponential discounting for
α = 1.0, hyperbolic discounting otherwise. The lower is α, the more pronounced is hyperbolicity.
Panel c displays discount rates dt inferred from D(t) = e−dtt : constant discounting for α = 1.0,
decreasing rates otherwise. The less subproportional are probability weights, the more quickly
discount rates converge to the base constant rate. Note that the pure rate of time preference r = 0.1
and the probability of contract survival s = 0.8 for all three panels
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Fig. 5 Effects of inherent uncertainty on discounting. Panel a depicts probability weights for
α = 0.5. For these probability distortions, Panel b shows the effect of varying probabilities of
contract survival s on the discount function defined in Eq. 6. The higher inherent uncertainty
is (the lower is s), the more strongly the discount function declines in time horizon. Panel c shows
imputed discount rates for the discount functions presented in Panel b. For s = 1, discount rates
are constant and equal to the rate of pure time preference r. The greater inherent uncertainty is,
the more excessive is discounting. r is held fixed at 0.1 in all three panels

Panel A of Fig. 4 depicts the probability weighting curves for three distinct
parameter values of α, with β = 1: a medium-sized departure from linearity
(α = 0.5), as exhibited on average by our experimental subjects, a strong
departure from linearity (α = 0.2), as well as the limiting case of linear prob-
ability weighting (α = 1). Panel B of Fig. 4 shows, for each of the three cases
of probability weighting, the effective discount weights resulting from Eq. 7 as
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they evolve over time.22 For a decision maker with linear probability weighting
the discount function, represented by the solid gray curve, is exponential. In
contrast, the dotted discount function of a typical decision maker with α = 0.5
departs from exponentiality. By comparison, the decision maker character-
ized by the most strongly S-shaped probability weighting curve underweights
(overweights) large (small) probabilities more strongly than does the decision
maker with α = 0.5, which leads to an even more pronounced departure from
exponential discounting (dashed curve).

Finally, Panel C of Fig. 4 displays the imputed discount rates dt inferred from
D(t) = e−dtt. The solid gray line corresponds to linear probability weighting.
Since this decision maker is not prone to probability distortions, her discount
rate is independent of time delay and, consequently, constant over time. In
contrast to this decision maker, the discount rates of the decision makers with
nonlinear probability weights start out at very high levels and then decline
sharply. As is evident from comparing the dashed curve with the dotted one,
the more subproportional probability weighting function generates a larger
decline in discount rates between period 2 and period 1, i.e. the difference d2 −
d1 is greater for higher degrees of subproportionality α. For this prediction
to hold the probability of contract survival s needs to be smaller than one.
Since people vary in their perceptions of uncertainty our framework predicts a
correlation between subproportionality and decreasing discount rates. This is
exactly what we find in our data.

Another important insight from our approach concerns the direct impact
of uncertainty on discounting behavior. Hyperbolicity of discount rates is cru-
cially influenced by people’s perceptions of uncertainty: Increasing uncertainty
not only raises the level of discount rates but also exacerbates revealed short-
term impatience. Figure 5 illustrates this effect for α = 0.5, the average index
of subproportionality in our data, and r = 0.1. When the survival probability s
declines from 0.8 to 0.5, the resulting discount function departs more strongly
from exponentiality as Panel B shows. Hence, the decrease in discount rates
associated with higher uncertainty is more pronounced as well (Panel C).

All the effects described so far operate solely via probability weighting, with
inherent uncertainty providing the link between the domains of time and risk,
while the utility of money is measured on the same scale in both decision
domains. What the model cannot handle is the magnitude effect, another
anomaly in discounting behavior: Typically, large payoffs are discounted less
heavily than small payoffs (Thaler 1981; Benzion et al. 1989). In our model, this
effect would have to manifest itself in the characteristics of the utility function.
However, risk aversion has been found to increase with payoff magnitude
(Kachelmeier and Shehata 1992; Holt and Laury 2002), which implies higher,
rather than lower, discounting of large payoffs. Prelec and Loewenstein (1991),
confronted with the same problem of incompatibility when attempting to

22For illustrative purposes, in Fig. 4 r is fixed at 0.1 and s is assumed to be 0.8, which means that
80% of all contracts are anticipated to survive at least one period.
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integrate time and risk in a single model, speculate that this discrepancy is
caused by interaction effects that are different for risky and intertemporal
choice: Magnifying a risky payoff renders the probability dimension more
important because, due to fear of disappointment, the decision maker’s con-
cern with obtaining the more desirable outcome increases. Evidence for such
an interaction effect has been recently provided by Fehr-Duda et al. (2010)
who show that probability weights decrease with stake size, i.e. large-payoff
gambles are evaluated comparatively more pessimistically. On the other hand,
magnifying a delayed payoff presumably does not have a strong impact on the
importance of time delay or even increases utility due to savoring. In any case,
the existence of interaction effects challenges the assumption of separability
and calls for systematic future research.

4.2 Perceived uncertainty and the pure rate of time preference

The model presented in the previous section provides a theoretical under-
pinning of our empirical finding that the degree of subproportionality α

predicts the extent of hyperbolic discounting 	δ. Our theoretical framework
implies such a relationship ceteris paribus, holding constant the other model
parameters, specifically the subjective probability of contract survival s and
the pure rate of time preference r, both of which are not observable. In our
experimental setting with decisions over a short time horizon, the subjective
probability of contract survival s should lie very close to unity since mortality
risk is very low in our age group of subjects and we took great care to
communicate experimenter reliability. One way of checking the plausibility
of the theoretical model is to investigate whether, on average, actual choices
are indeed consistent with this conjecture, i.e. whether values of s implied by
our data lie in the vicinity of one for a wide range of plausible values of the pure
rate of time preference r.

For this purpose, we examine the combinations of s and r that are consistent
with the observed average intertemporal tradeoffs between present equiva-
lents PE and delayed payments x. We solve for all feasible combinations of ŝ
and r̂ that are compatible with the observed choices by inserting the estimates
for subjects’ average behavioral parameters η, α and β into Eq. 6. As is clear
from Eq. 6, a higher probability of contract survival needs to be compensated
by a higher pure rate of time preference, ceteris paribus, to keep individuals
indifferent between more immediate and more remote rewards.

As Fig. 6 shows, the feasible (ŝ, r̂)-combinations indeed exhibit a rising
profile, with ŝ starting out at below 97% p.a. and converging to 100% p.a.,
when the pure rate of time preference increases from 0% to 15% p.a. and
beyond. For instance, s = 99% is compatible with r � 8.5% p.a. What this
exercise shows is that the data, interpreted within our framework, is consistent
with a very high subjective probability that contracts survive at least one
year, in accordance with our conjecture. Furthermore, accounting for inherent
uncertainty implies rates of pure time preference in a plausible range lying
considerably below the observed average discount rates of more than 30% p.a.
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Fig. 6 Feasible
(ŝ, r̂)-combinations. The solid
line represents combinations
of ŝ (probability of contract
survival) and r̂ (rate of pure
time preference) that are
feasible with our data and
model estimates when
interpreted within the
framework of Eq. 6. It
suggests that observed
discounting behavior is
compatible with quite
reasonable values for the
probability of contract
survival and the rate of pure
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This suggests that even allegedly guaranteed future outcomes are viewed as
slightly uncertain, in line with direct questionnaire evidence provided in Patak
and Reynolds (2007). The authors asked respondents to rate their certainties
for the same rewards, delayed by 1, 2, 30, 180, and 365 days, respectively, which
they had encountered during a preceding choice experiment. The respondents
reported ratings that clearly decline with the length of delay. Moreover, using a
similar method, Takahashi et al. (2007) found that such subjective probabilities
of obtaining delayed rewards decay in a hyperbolic-like manner, consistent
with probability weights w(st) declining hyperbolically with delay t.

5 Conclusion

For several decades, decision research has been dominated by the quest for
better descriptive theories of behavior under risk and over time, triggered by a
large body of experimental evidence challenging the classical models of choice,
expected utility theory and discounted utility theory. Alternative models,
accounting for nonlinear probability weighting and hyperbolic discounting, de-
scribe behavior much more accurately than do the classical models, at least at
the aggregate level. In this paper we address the question of whether the better
fit of the generalized models is actually a consequence of the same subjects’
anomalous behaviors. We present the first evidence that more pronounced
systematic departures from linear probability weighting are indeed associated
with more strongly declining discount rates at the level of the individual
decision makers. This result is robust to inclusion of additional controls as
well as model specification. In fact, the only variable explaining a substantial
fraction of heterogeneity in individual discounting patterns turns out to be the
degree of subproportionality of probability weights.
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Several authors have proposed that the existence of matching violations of
the classical axioms is not coincidental, but rather reflects the close relationship
between risk and delay (e.g. Prelec and Loewenstein 1991). Some researchers
have even argued that the two attributes are virtually the same, but there is
no consensus as to which one is the more fundamental of the two. We favor
the view that, if there is a hierarchical relationship between them at all, risk is
the more likely candidate. To bolster this view, we provide a theoretical model
predicting the observed link between probability distortions and decreasing
discount rates. For hyperbolic discounting to emerge two factors need to
interact: probability distortions and future uncertainty.

Arguably, the future is uncertain by definition. Uncertainty may stem from
different sources, either tied to the individual herself, such as lifetime ex-
pectancy, or to environmental factors. Lack of contract enforcement and weak
property rights, for instance, may make people skeptical that promises will be
actually kept. Therefore, institutionally generated uncertainties may induce
extreme short-run impatience even if people’s pure rate of time preference
is low and constant. This insight is important because it implies that revealed
behavior may be predominantly driven by environmental factors rather than
by the underlying preferences themselves and, consequently, may be amenable
to economic policy.

The channel through which uncertainty generates hyperbolic discounting is
nonlinear probability weighting, a robust regularity of risk taking behavior.
If probability weighting plays such an important role in risk taking and
discounting behavior, the obvious question concerning the source of these
probability distortions arises. Unfortunately, little is known empirically about
the forces driving probability distortions. A number of theoretical contribu-
tions have invoked emotions to explain probability weighting (Wu 1999; Caplin
and Leahy 2001). Walther (2003, 2010), for instance, rationalizes nonlinear
probability weighting by generalizing expected utility theory: He assumes that,
in addition to monetary outcomes, the decision maker cares about emotions
triggered by the resolution of uncertainty. His approach predicts that, if the
decision maker anticipates experiencing elation or disappointment when the
actual outcome lies above or below some normal level, she will distort outcome
probabilities according to an S-shaped pattern. The more emotional a person
expects to be, the stronger will be her departure from linear probability
weighting and, consequently, the more pronounced hyperbolic discounting
will be. Preliminary evidence for the role of affect in probability weighting
is provided by Rottenstreich and Hsee (2001) who show that probability
weights depart more strongly from linearity for emotion-laden targets, such as
a kiss from one’s favorite movie star, than for comparatively pallid monetary
outcomes. A systematic test of the affect hypothesis is still lacking, and we
have to leave it to future research to investigate whether anticipated emotions
or some other factors are the primary drivers of probability weighting and
whether, indeed, there is a causal link from probability weighting to hyperbolic
discounting.
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Appendix A: Formal proofs

A.1 Hyperbolicity

In the framework proposed here, the discount weight D(t) equals

D(t) = w(st)ρ t, (8)

with ρ defined as e−r. In order to establish that subproportional probability
weights are sufficient23 for discount rates to decrease, we define decreasing
impatience at t in the following way (Prelec 2004): Let (x, t) be a temporal
prospect paying off x at t with certainty. A preference relation 	 exhibits
decreasing impatience if for any t > 0, 0 < x < y, (x, v) ∼ (y, z) implies (y, z +
t) 	 (x, v + t).

According to our framework the temporal prospects (x, 0) ∼ (y, 1) are
evaluated as u(x)w(s0)ρ0 = u(y)w(s1)ρ1. As subproportionality of w implies
that w(s) < w(st+1)/w(st), deferring the prospects by t periods renders

1 = u(y)w(s)ρ
u(x)

<
u(y)w(st+1)ρ t+1

u(x)w(st)ρ t
(9)

and, therefore, (y, t + 1) � (x, t), meeting the requirement for decreasing im-
patience if s < 1. �

In the intertemporal tradeoff between the present and the subsequent
period the discount weight equals w(s)ρ. At time t, u(x) is discounted by
w(st)ρ t. Compounding by the initial one-period discount weight w(s)ρ would
render w(s)w(st)ρ t+1 at t + 1, but the discount weight effectively amounts
to w(st+1)ρ t+1 then. Therefore, w(st+1)/(w(s)w(st)), the wedge between the
relative discount weights D(0)/D(1) and D(t)/D(t + 1), provides a measure
for the extent of departure from stationarity at t.

23Note that subproportionality, aside from s < 1, is also necessary (Saito 2011).

http://www.iew.uzh.ch/wp/iewwp412.pdf
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A.2 Comparative hyperbolicity

The previous proof shows that, provided that s < 1, subproportionality of w

engenders hyperbolic discounting. As will become clear shortly, a decision
maker with a comparatively more subproportional probability weighting func-
tion will also tend to exhibit more strongly decreasing discount rates:

A preference relation 	2 exhibits more strongly decreasing impatience than
	1 if for any intervals 0 ≤ v < z, t, 	t and outcomes 0 < x < y, 0 < x′ < y′,
(x, v) ∼1 (y, z), (x, v + t) ∼1 (y, z + t + 	t), and (x′, v) ∼2 (y′, z) imply (x′, v +
t) �2 (y′, z + t + 	t) (Prelec 2004).

In order to examine the effect of the degree of subproportionality on
hyperbolicity suppose that the probability weighting function w2 is compar-
atively more subproportional than w1, as defined in Prelec (1998), and that the
following indifference relations hold for two decision makers 1 and 2 at periods
v = 0 and z = 1:

u1(x) = u1(y)w1(s)ρ for 0 < x < y,

u2(x′) = u2(y′)w2(s)ρ for 0 < x′ < y′.

Due to subproportionality, the following relation holds for decision maker 1 in
period t:

1 = u1(y)w1(s)ρ
u1(x)

<
u1(y)w1(st+1)ρ t+1

u1(x)w1(st)ρ t
. (10)

Therefore, the subjective probability of contract survival has to be reduced by
compounding s over an additional time period 	t to re-establish indifference:

u1(x)w1(st)ρ t = u1(y)w1(st+1+	t)ρ t+1. (11)

It follows from the definition of comparative subproportionality that this
adjustment of the survival probability by 	t is not sufficient to re-establish
indifference with respect to w2, i.e.

u2(x′)w2(st)ρ t < u2(y′)w2(st+1+	t)ρ t+1. (12)

Therefore, (x′, t) ≺ (y′, t + 1 + 	t). �
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A.3 Uncertainty and hyperbolicity

In order to derive the effect of increasing uncertainty on hyperbolicity we
examine the sensitivity of the departure from stationarity at t, measured by
w(st+1)/(w(s)w(st)), with respect to changing s:

∂

∂s

[
w(st+1)

w(s)w(st)

]

= 1

[w(s)w(st)]2

[
(1 + t)stw(s)w(st)w′(st+1)

− tst−1w(s)w(st+1)w′(st) − w(st)w(st+1)w′(s)
]

= 1

s[w(s)w(st)]2

[
(1 + t)st+1w(s)w(st)w′(st+1)

− tstw(s)w(st+1)w′(st) − sw(st)w(st+1)w′(s)
]

= w(st+1)

sw(s)w(st)

[
(1 + t)st+1w′(st+1)

w(st+1)
− tstw′(st)

w(st)
− sw′(s)

w(s)

]

= w(st+1)

sw(s)w(st)

[
(1 + t)ε(st+1) − tε(st) − ε(s)

]

< 0

with ε(p) = pw′(p)/w(p) defined as the elasticity of the probability weighting
function w. According to Segal (1987), p. 148, subproportionality holds iff ε(p)

is increasing. As st+1 < st < s, ε(st+1) < ε(st) < ε(s) and, hence, the sum of the
elasticities in the final line of the derivation is negative. Therefore, increasing
uncertainty, i.e. decreasing s, entails a greater departure from stationarity and,
consequently, a higher degree of hyperbolicity. �

A.4 Effect of concavity

In the course of the experiment we cannot observe discount weights at delay
t, D(t), directly but infer D̃(t) from the intertemporal tradeoffs between
payments at different dates, i.e. PE = D̃(t)xt. According to our assumptions,
utility is modeled by a power function u(x) = xη, η > 0, which renders D̃(t) =
D(t)

1
η . It follows that

D̃(0)/D̃(1)

D̃(t)/D̃(t + 1)
=

(
D(0)/D(1)

D(t)/D(t + 1)

) 1
η

(13)
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and therefore the observed decrease in discount rates resulting from nonlinear
probability weighting gets amplified by η < 1 and, hence, concavity has to be
controlled for in the regression model.

Appendix B: Censored regression model

This appendix discusses the way we model the difference in the censored
observed discount rates, 	δ = δ2 − δ4, and link it to individual risk preferences.

To relate time discounting to risk preferences, the model assumes the
following linear relationship between the discount rate δ∗

t,i of individual i ∈
{1, . . . , N} over delay t ∈ {two months, four months} and a vector of regressors
ci, containing a constant, the parameters of risk preferences, ηi, αi and βi, as
well as some socioeconomic characteristics:

δ∗
t,i = ciγt + et,i, (14)

where γt denotes a vector of slope parameters and et,i stands for a normally
distributed error term with mean zero and variance 1

2σ 2. Under the assumption
of nonnegative discounting, the choice menu, depicted in Fig. 2, allows us to
directly elicit individual discount rates that lie between 0 and 92.5%. However,
if individual i always opts for being paid out at the earlier point in time (Option
A), we do not necessarily observe her true discount rate δ∗

t,i as we only know
that it amounts to at least 95%. Thus, the elicited discount rates, δ2,i and/or δ4,i,
are censored from above at b = 0.95. In the data we observe

δt,i =
{

δ∗
t,i if δ∗

t,i < b ,

b otherwise.
(15)

This immediately yields the difference in the discount rates over two and four
months,

	δ∗
i = ci (γ2 − γ4)︸ ︷︷ ︸

	γ

+ e2,i − e4,i︸ ︷︷ ︸
	ei

, (16)

where 	ei is normally distributed with mean zero and variance σ 2. Conse-
quently, this difference 	δ∗

i is affected by censoring, too, and only observed
if both δ2,i < b and δ4,i < b .
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In order to avoid biased estimators for γ2, γ4, and σ , the model needs to
take the censored nature of the data into account. Therefore, its log likelihood
takes on the following form:

ln L (γ2, γ4, σ ; c, δ2, δ4) =
∑

i: δ2,i=b , δ4,i=b

P
(
δ2,i = b , δ4,i = b | c, δ2, δ4

)

+
∑

i: δ2,i<b , δ4,i=b

P
(
δ2,i < b , δ4,i = b | c, δ2, δ4

)

+
∑

i: δ2,i=b , δ4,i<b

P
(
δ2,i = b , δ4,i < b | c, δ2, δ4

)

+
∑

i: δ2,i<b , δ4,i<b

1

σ
φ

(
	δi − ci (γ2 − γ4)

σ

)
, (17)

where φ represents the standard normal distribution’s density and the proba-
bilities P, accounting for the different ways by which an observation may be
censored, are given by

P
(
δ2,i = b , δ4,i = b | c, δ2, δ4

)

=
[

1 − �

(
b − ciγ2

σ

)] [
1 − �

(
b − ciγ4

σ

)]
,

P
(
δ2,i < b , δ4,i = b | c, δ2, δ4

)

= �

(
b − ciγ2

σ

) [
1 − �

(
b − ciγ4

σ

)]
,

P
(
δ2,i = b , δ4,i < b | c, δ2, δ4

)

=
[

1 − �

(
b − ciγ2

σ

)]
�

(
b − ciγ4

σ

)
,

with � denoting the cumulative density function of the standard normal distri-
bution. Numerical maximization of ln L (γ2, γ4, σ ; c, δ2, δ4) yields the maximum
likelihood estimates of γ̂2, γ̂4, and σ̂ . To obtain the maximum likelihood
estimate of 	γ̂ we utilize the invariance property.
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Appendix C: Observed discount rates
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Fig. 7 Distributions of discount rates δ2 and δ4 and their differences
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Appendix D: Estimated risk parameters
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Fig. 8 Distributions of η, α and β

Appendix E: Controls

Table 4 Summary statistics (n = 112)

Type Mean Std.Err.

Female Binary 0.446 0.047
Age Numeric 22.625 0.209
Log-income Numeric 6.380 0.067
Experience Binary 0.304 0.044
CRT Numeric 2.214 0.082

CRT is the test score for the Cognitive Reflection Test (Frederick 2005), a three-item test
measuring specific aspects of cognitive ability. Experience is a binary variable equal to one if
experience with investment decisions was reported, zero otherwise
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Table 5 Number of observations at the bounds (n = 112)

δ2 δ4

≥ 95% 23 14
0% 2 0
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