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Abstract 
Standard economic models view risk taking and time discounting as two independent dimensions 
of decision making. However, mounting experimental evidence demonstrates striking parallels in 
patterns of risk taking and time discounting behavior and systematic interaction effects, which 
suggests that there may be common underlying forces driving these interactions. Here, we show 

that the inherent uncertainty associated with future prospects together with individuals’ proneness 
to probability weighting generates a unifying framework for explaining a large number of puzzling 
behavioral findings: delay-dependent risk tolerance, aversion to sequential resolution of uncertainty, 
preferences for the timing of the resolution of uncertainty, the differential discounting of risky and 
certain outcomes, hyperbolic discounting, subadditive discounting, and the order dependence of 
prospect valuation. Furthermore, all these phenomena can be accommodated by the same set of 
preference parameter values and plausible levels of inherent uncertainty. (JEL: D01, D81, D91) 
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Teaching Slides 
A set of Teaching Slides to accompany this article is available online as 
Supplementary Data. 

. Introduction 

hatever the nature of our decisions, hardly ever can we be sure about their outcomes.
n particular, the consequences of the most important decisions in our lives, such as
hat line of business to enter or whom to get married to, do not materialize immediately
ut usually take time to unfold. In other words, these important decisions involve
oth risk and delay. Driven by the evidence challenging expected utility theory and
iscounted utility theory, the past half century has seen a surge of new models of
ecision making for the domains of risk taking and time discounting (Starmer 2000 ;
rederick, Loewenstein, and O’Donoghue 2002 ; Wakker 2010 ; Ericson and Laibson
019 ). A considerable body of experimental evidence suggests, however, that risk
aking and time discounting are linked and interact with each other in important ways
ummarized in Table 1 . 

First, risk aversion has been shown to be lower for risks materializing in the more
emote future than for risks materializing in the more imminent future (e.g., Shelley
1994 )). Moreover, it seems to be the case that probability weighting rather than utility
s the carrier of this effect (Abdellaoui, Diecidue, and Öncüler 2011b ). Lower risk
version for remote risks may be one reason why the mobilization of public support for
olicies combating global warming is so difficult. Thus, economic models of climate
olicy may benefit from recognizing that risk aversion decreases with time delay.
sset markets constitute another area where delay-dependent risk aversion may play
n important role in understanding the downward sloping structure of risk premia, that
s, the fact that risk premia decline with maturity (van Binsbergen, Brandt, and Koijen
012 ). 

A second regularity is based on a considerable body of evidence that impatience
ends to decrease when outcomes are shifted into the more remote future—a finding
n which the large literature on hyperbolic discounting is based (e.g., Loewenstein and
haler (1989 )). Hyperbolic discounting has been invoked to explain a large number of
henomena, such as impulsive behavior, procrastination, and insufficient saving for
etirement. 

Third, the evidence indicates that many people seem to have a preference with
espect to the way uncertainty resolves, that is, sequentially or in one-shot. Sequential
valuation of prospects may render decision makers less risk tolerant (e.g., Abdellaoui,
cheme “Welcoming Talents”), and a grant from the I-SITE UNLE (project IBEBACC—funding scheme 
Chaire d’Excellence”). The paper builds on the previous working paper Epper and Fehr-Duda (2012 ) “The 
issing Link: Unifying Risk Taking and Time Discounting”. 

-mail: thomas.epper@cnrs.fr (Epper); helga.fehr@bf.uzh.ch (Fehr-Duda) 
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libanoff, and Placido (2015 )). In the domain of financial decisions, this phenomenon
ay underlie the large equity premia observed around the globe. 
Fourth, regarding time discounting, a similar phenomenon has been observed:

iscount rates compounded over subperiods tend to be higher than the discount rate
pplied to the total period (e.g., Read (2001 )). This incidence of process dependence,
abeled subadditive discounting , has been put forward as an alternative explanation to
yperbolic discounting to account for the observed patterns in discounting behavior. 

Fifth, many people also exhibit a preference regarding the timing of the resolution
f uncertainty. Usually, there is a substantial share of participants who favor delayed
esolution of uncertainty in situations when money is at stake even though it should
e beneficial to know the outcome of one’s financial decisions as early as possible
e.g., von Gaudecker, van Soest, and Wengström (2011 )). This finding triggered a large
heoretical literature following the seminal work of Kreps and Porteus (1978 ). 

A sixth regularity indicates that the presence of risk influences time discounting
n an unexpected way: Sure outcomes appear to be discounted more heavily than
ncertain ones, discussed in the literature under the heading diminishing immediacy
e.g., Keren and Roelofsma (1995 )). 

Finally, people’s evaluations of future risky payoffs depend on the order by which
hey are devalued for risk and for delay, which should not make any difference
ccording to the standard view (Öncüler and Onay 2009 ). In particular, discounting
or risk first seems to decrease value relative to discounting for time first. All these
egularities suggest that theories that are restricted to either domain cannot easily
ccount for the intertwined nature of risk taking and time discounting. 

The main purpose of our paper is to provide a unifying account of all these
henomena by integrating risk taking and time discounting into one theoretical
pproach. Thus, our goal is to present a formal model that is capable of explaining
ll the regularities on the basis of a parsimonious set of assumptions. Our approach is
nspired by a string of papers by Halevy (2008 ), Saito (2011 ), Chakraborty, Halevy,
nd Saito (2020 ), and rests on two key assumptions: First, there is risk attached to
ny future prospect because only immediate consequences can be totally certain. We
elieve that this is a plausible assumption because it is impossible to foresee all future
ontingencies. Accordingly, Prelec and Loewenstein (1991 ) state that “anything that is
elayed is almost by definition uncertain” (p. 784). In particular, it is always possible
hat an event may occur that prevents the realization of a future outcome, that is,
omething may go wrong before payoffs actually materialize. An unforeseen event
ay arise, such as missing one’s transatlantic flight because the taxi driver was late, or
ealizing that one has forgotten one’s passport at home. Presumably, almost everyone
an readily recall such an incident. We capture the notion that something may go wrong
y introducing a survival probability 0 < s < 1 that applies also to allegedly certain
uture outcomes. 

Second, if future prospects are perceived as inherently risky, people’s risk tolerance
ust play a role in their valuations of future prospects. Therefore, the characteristics of
atemporal) risk preferences are crucial not only for evaluating delayed risky prospects
ut also for delayed (allegedly) certain ones. There is abundant evidence from the
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TABLE 1. Observations on risk taking and time discounting. 

Depends on Risk tolerance Patience 

Delay #1 Increases with delay #2 Increases with delay 

Process #3 Higher for one-shot #4 Higher for one-shot 
than sequential valuation than sequential valuation 

Timing #5 Higher for late than �
immediate resolution 

Risk � #6 Higher for risky payoffs 
than for certain ones 

Order #7 Higher for time-first �
than risk-first order 

Notes: The table describes seven regularities in experimental findings on risk taking and time discounting behavior 
with respect to delay, process, timing, risk, and order effects. In Section 5 , we present a comprehensive discussion 
of references regarding the empirical evidence and extant theories that address various subsets of these findings. 
An overview is provided in Online Appendix A. 
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eld and the laboratory that risk taking behavior depends nonlinearly on the objective
robabilities (Prelec 1998 ; Fehr-Duda and Epper 2012 ; Barberis 2013 ; O’Donoghue
nd Somerville 2018 ). For this reason, models involving probability weighting, such as
ank-dependent utility theory (RDU) (Quiggin 1982 ) and cumulative prospect theory
Tversky and Kahneman 1992 ) have been strong contenders of expected utility theory
EUT) (Wakker 2010 ). 

Our approach relies on a key characteristic of probability weighting, proneness
o Allais-type common ratio violations , that is, one of the most widely replicated
xperimental regularities, found in human and animal behavior: Probabilistically
ixing two lotteries with an inferior lottery frequently leads to preference reversals
Kahneman and Tversky 1979 ; Gonzalez and Wu 1999 ). This feature of probability
eighting is called subproportionality and was characterized axiomatically by Prelec
1998 ). 

Our contribution to the literature is threefold. First, we show for general m -outcome
rospects that subproportional probability weighting under RDU together with the
ssumption that (even allegedly certain) future outcomes are inherently risky provides
n integrative account of all the above mentioned experimental regularities. We rely on
 well-established model of risk preferences with axiomatic foundations (e.g., Quiggin
1982 )), that we combine with the plausible assumption that something may go wrong
n the future. 

In particular, our theoretical contribution builds on and explores the ramifications
f Halevy (2008 )’s ideas, later clarified and extended by Saito (2011 ) and Chakraborty,
alevy, and Saito (2020 ).1 Our objective is to demonstrate that the consequences
f their assumptions are not limited to the delay and risk dependence of patience,
bservations #2 and #6 in Table 1 , but provide the basis for unifying all the
even experimental regularities listed there. We derive novel predictions regarding
. Relatedly, Chakraborty (2021 ) explores risk-time separability violations by adopting a weaker version 
f the stationarity axiom to simple risky prospects .x; pI 0; 1 � p/ . 
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i) the delay dependence of probability weights and (ii) the intrinsic preference for
ate resolution of uncertainty. Furthermore, we take advantage of Segal’s (Segal
987a , b , 1990 ) and Dillenberger (2010 )’s contributions to sequential prospect
valuation by explicitly integrating the dimension of time delay and show that (iii)
ubproportional risk preferences imply subadditive discounting and (vi) that, under
ertain circumstances, an aversion to sequential resolution of uncertainty arises and
emains intact under inherent future uncertainty. 

Second, we demonstrate that the same set of preference parameter values together
ith a narrow and plausible range of survival probabilities provide a reasonable
uantitative account of all seven phenomena. Furthermore, we provide novel evidence
hat, at the individual level, reported perceptions of future uncertainty are indeed
ignificantly related to the estimated values of the survival probabilities. Thus, this
vidence not only underscores the credibility of our assumptions but also substantiates
hat the perception of uncertainty is actually an important mechanism underlying
bserved behavior. 

Third, we derive new predictions, which can be put to the test by future research.
e show, for example, that the decrease in risk tolerance, induced by the sequential

esolution of uncertainty of (atemporal) prospect risks, carries over, under certain
onditions, to the sequential resolution of uncertainty for delayed future prospects.
his prediction is important as many societal risks (e.g., climate risks) and asset market
isks resolve sequentially over time. However, so far this prediction has not been tested
xperimentally. 

The remainder of the paper is organized as follows: Section 2 discusses the key
ssumptions of our model. Its implications for explaining the seven types of findings
re developed in Section 3 . Section 4 is devoted to a quantitative assessment of
ur model predictions and the exploration of the relationship between reported and
stimated levels of future uncertainty. Section 5 presents the experimental findings on
he seven phenomena and discusses other theoretical approaches that address some
f these empirical regularities. Finally, Section 6 concludes. Propositions including
roofs and complementary materials are available in the Online Appendix. 

. The Model 

n the following, we will first present the general setup of our approach. Second, we
ustify our assumptions on the characteristics of the probability weighting function.
inally, we explain how we integrate that “something may go wrong” into the model. 

.1. Risk Preferences 

n this paper, we rely on RDU, a generalization of EUT, that allows for nonlinear
eighting of the probabilities, which has proven to be an exceptionally powerful
omponent for capturing deviations from EUT (Diecidue and Wakker 2001 ).
ccording to RDU, a decision maker’s atemporal risk preferences over prospects that
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re played out and paid out with negligible time delay can be represented by a rank-
ependent functional. Consider a prospect P D .x1 ; p1 I : : : I xm 

; pm 

/ over (terminal)
onetary outcomes x1 > x2 > : : : > xm 

with xi 2 X � R ; pi 2 Œ0; 1� and †pi D 1 .
he function u denotes the utility of monetary amounts x, and w denotes the subjective
robability weight attached to p1 , the probability of the best outcome x1 . As usual,
oth u and w are assumed to be monotonically increasing, w to be twice differentiable
n (0,1) and to satisfy w.0/ D 0 and w.1/ D 1 . Decision weights �i are defined as

2 

�i D
8 < 

: 

w.p1 / for i D 1 

w
�P i 

kD 1 pk 

�
� w

�P i�1 
kD 1 pk 

�
for 1 < i � m 

: (1)

Thus, the decision weight of xi is the probability weight attached to the probability
f obtaining something at least as good as xi subtracted by the probability weight
ttached to the probability of obtaining something strictly better than xi . Consequently,
ecision weights sum to 1. Finally, the prospect’s value is represented by 

V .P / D
m X 

iD 1 

u.xi /�i : (2)

To keep the logic of our approach as transparent as possible, we present the
ollowing steps for m D 2 and delegate the general case to Online Appendix B.1. For
 D 2 , the prospect reduces to P D .x1 ; pI x2 ; 1 � p/ and equation ( 2 ) reads as 

V .P / D u.x1 / w.p/ C u.x2 /.1 � w.p// 

D .u.x1 / � u.x2 // w.p/ C u.x2 /: 
(3)

his representation of V clarifies that x2 is effectively a sure thing, whereas obtaining
omething better than x2 is risky. 

If the prospect is not played out and paid out in the present, but at some future time
 > 0 , prospect value is affected by time discounting as well. We follow the standard
pproach and model people’s willingness to postpone gratification by a constant rate
f time preference � � 0 , yielding a discount weight of �.t / D exp . ��t / .3 A prospect
o be played out and paid out at t > 0 is discounted for time in the following standard
ay: 

V0 .P / D V .P /�.t /: (4)

bundant empirical evidence has demonstrated that risk taking behavior depends
onlinearly on the probabilities (Starmer 2000 ; Fehr-Duda and Epper 2012 ). However,
n order to explain the observed interaction effects, we need to put more structure on
he type of nonlinearity. 
. Alternatively, decision weights �
i 
can be expressed in terms of the cumulative distribution function F 

f the outcomes x
i 
: �

i 
D w.1 � F .x

iC 1 
// � w.1 � F .x

i 
// for 1 � i � m , where F .x

m C 1 
/ WD 0 . 

. This assumption is not crucial for our results—neither a 0 rate of time preference, that is, � D 1 , nor 
enuinely hyperbolic time preferences affect our conclusions. 
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.2. Probability Weighting 

ur approach is based on proneness to common ratio violations , originally brought
o the fore by Allais (1953 ).4 In RDU, common ratio violations are mapped by
ubproportionality of probability weights. Formally, subproportionality holds if 1 �
 > q > 0 and 0 < � < 1 imply the inequality 

w.p/ 

w.q/ 
>

w.�p/ 

w.�q/ 
; (5) 

Prelec 1998 ).5 

Subproportionality implies the certainty effect , which constitutes the special case
f p D 1 . Therefore, 

w.�q/ > w.�/ w.q/; (6) 

s satisfied for any �; q such that 0 < �; q < 1 . This feature of subproportional
robability weighting has a crucial consequence: It produces an aversion to
ompounding of probability weights (Segal 1987a , b , 1990 ). We will use this insight
hen we discuss aspects of uncertainty resolution. 
When inspecting the graph of w.p/ , one cannot detect subproportionality with

he naked eye. In fact, many different shapes of w.p/ display subproportionality, at
east over some range of probabilities. Figure 1 depicts three examples of globally
ubproportional probability weighting functions with starkly different shapes: an
nverse S-shaped, a concave, and a convex function. 

Aside from the examples in Figure 1 , many other functional specifications have
een proposed in the literature (see Online Appendix E.3). Perhaps the most widely
sed representative of a globally subproportional function is Prelec (1998 )’s flexible
wo-parameter specification of the compound invariant class, designed to map common
atio violations. This functional form is particularly useful because it provides a
irect measure of subproportionality. Therefore, we will use this “standard” functional
pecification throughout the paper to illustrate our results,6 defined as 

w.p/ D exp 
� � ˇ. � ln .p//˛

�
; (7) 

here 0 < ˛ governs the departure from linearity and 0 < ˇ governs the range of
onvexity. The function is subproportional (supraproportional) for ̨ < 1 ( ̨ > 1 ) with
. For example, many people prefer .30; 1/ to .40; 0:8 I 0; 0:2/ , but prefer .40; 0:2 I 0; 0:8/ to 
30; 0:25 I 0; 0:75/ , that is, scaling down the probabilities by a common factor leads to preference reversals 
hat are inconsistent with EUT. An intuitive explanation for common ratio violations is based on emotional 
eactions (Wu 1999 ; Walther 2003 ). 

. Kahneman and Tversky (1979 ) note that this property imposes considerable constraints on the shape 
f w: It holds if and only if ln w is a convex function of ln p. In other words, . .d ln w/=.d ln p// 

0 
> 0 , or 

he elasticity of w, "
w 

.p/ D .d ln w/=.d ln p/ , is increasing in p. The equivalence of subproportionality and 
ncreasing elasticity is shown in Online Appendix E.1. 

. Aydogan, Bleichrodt, and Gao (2016 ) provide experimental support for the compound invariant 
pecification at the level of preference conditions. 

uary 2024
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FIGURE 1. Exhibits of subproportional probability weighting functions. Compound invariant: 
w.p/ D exp . �. � ln .p//0:5 / (Prelec 1998 ). This function is globally subproportional and inverse S- 
shaped. Conditional invariant: w.p/ D exp . �5.1 � p0:1 // (Prelec 1998 ). This function is globally 
subproportional and concave. Hyperbolic: w.p/ D p=p C 2:8.1 � p/ (Rachlin, Raineri, and Cross 
1991 ). This function is globally subproportional and convex. 
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maller (larger) values of ˛ indicating more pronounced degrees of subproportionality
supraproportionality). The greater is ˇ, the greater, ceteris paribus, is the range of
robabilities for which the curve is convex, that is, underweighting p. 

.3. Future Uncertainty 

he final building block of our model concerns the integration of “something may go
rong” due to events unrelated to the prospect under consideration. This (uninsurable)
isk inherent in the future, survival risk for short, turns allegedly guaranteed payoffs
nto risky ones, and introduces an additional layer of risk over and above the objective
robability distributions of risky payoffs (henceforth, referred to as prospect risk ).
onsequently, there are two distinct types of risk, prospect risk , which may resolve at
ny time between the present and the payment date, and survival risk , which resolves
ully only at the payment date. Thus, the subjective perception of future uncertainty
hanges the nature of the prospect. Formally, let s < 1 denote the constant per-period
robability of prospect survival, that is, the probability that the decision maker will
ctually obtain the promised rewards by the end of the period. Essentially, there are two
ays of accounting for this subjective probability s. First, for a delay t , the probability

t is transformed according to the decision maker’s probability weighting function,
nd the resulting w.st / affects the prospect as a whole, that is, all outcomes equally.
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n this case, prospect value amounts to 

V0 .P / D V .P / w.st /�.t /: (8) 

Such an approach only affects measured discount rates but cannot handle the
bserved interaction effects. Thus, we work with the second solution, namely, that
impacts the perceived probability distribution of the prospect, as originally analyzed
y Halevy (2008 ). In that case, the probability that the allegedly guaranteed payment

m 

materializes at the end of period t is perceived to be st , and the probabilities of
btaining something better than xm 

are scaled down by st . Therefore, the objective m -
utcome prospect is subjectively perceived as an ( m+1 )-outcome prospect. Focusing
n m D 2 again, z P D .P; st I N x; 1 � st / D .x1 ; pst I x2 ; .1 � p/st I N x; 1 � st / , where

N  < xm 

captures that “something may go wrong.”
Setting u.N x/ D 0 , the subjective present value of the prospect amounts to 

V0 .
z P / D 

�
.u.x1 / � u.x2 // w.pst / C u.x2 / w.st /

�
�.t / 

D 

�
.u.x1 / � u.x2 //

w.pst / 
w.st / 

C u.x2 /
�
w.st /�.t /: 

(9) 

From the point of view of an outsider, the subjective probability distribution of
rospect Q P is not observable. Consequently, she infers probability weights z w and
iscount weights Q � from observed behavior on the presumption that the decision
aker evaluates the objectively given prospect P , and estimates preference parameters
ccording to RDU in the standard way7 : 

V0 .
z P / D �

.u.x1 / � u.x2 //z w .p/ C u.x2 /
� Q �.t /; (10) 

nterpreting observed z w as true probability weights and observed Q � as true discount
eights, while in fact the observed weights are distorted by survival risk. By comparing
quation ( 9 ) with equation ( 10 ), we can see that the relationships between true
nderlying weights and observed ones are given by 

z w .p / D w.p st / 

w.st / 
; (11) 

nd 

Q �.t / D w.st /�.t / : (12) 

Since z w .p/ ¤ w.p/ and Q �.t / ¤ �.t / under subporportionality, the presence of
urvival risk drives a wedge between true underlying preferences and observed risk
aking and discounting behavior. Thus, future risk conjointly with proneness to Allais-
ype behavior provides the mechanism by which behavior under risk and behavior over
ime are intertwined. A summary of the model variables is provided in Table 2 . 
. Note that it takes at least two non-zero outcomes to separate risk taking and time discounting. 
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TABLE 2. Model variables. 

Variable Description Characteristics 

Prospects x Monetary payoff x � 0 

p Probability of x 0 � p � 1 

s Probability of prospect survival 0 � s < 1 

1 � s Survival risk ”
t Length of time delay t � 0 

Preferences u.x/ Utility function u.0/ D 0; u0 > 0 

w.p/ True probability weight w.0/ D 0; w.1/ D 1; w0 > 0 

� Rate of pure time preference � � 0 , constant 
�.t/ Discount weight �.t/ D exp . ��t/ 

Behavior z w .p/ Observed probability weight z w .p/ D w.pst / 
w.st / 

Q �.t/ Observed discount weight Q �.t/ D w.st /�.t/ 

Q �.t/ Observed discount rate Q �.t/ D � Q �0 .t/ 
Q �.t/ 
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. Model Predictions: Unifying the Experimental Evidence 

n the following, we discuss the implications of our approach for the experimental
henomena listed in Table 1 and demonstrate that, qualitatively, all the Observations
1 through #7 can be explained within our framework. A quantitative assessment
f the model’s performance is presented in Section 4 . While we retain some of the
undamental calculations in the main text, propositions, and their proofs are presented
n Online Appendix B. 

.1. Prediction #1: Delay Dependence of Risk Tolerance 

he first fact in our list considers the observation that risk tolerance for delayed
rospects seems to be higher than risk tolerance for present ones. Concerning delayed
isky prospects, we examine the case when prospect risk and survival risk are resolved
imultaneously in one-shot at time t . We have seen from equation ( 11 ) that observed
robability weights z w .p/ deviate systematically from the underlying atemporal ones
.p/ , 

z w .p / D w.p st / 

w.st / 
: 

s w.st / < 1 , the denominator boosts observed probability weights, whereas the
dditional st in the argument of w in the numerator distorts them. Due to
ubproportionality 

z w .p / D w.p st / 

w.st / 
>

w.p / 

w.1/ 
D w.p /; (13)

mplying that z w is more elevated than w, that is, that z w lies above w, which constitutes
ne of the central implications of our model. Moreover, the wedge between z w and w
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ncreases with t . Since the probability weighting function maps the decision weight
f the best possible outcome, an increase in the elevation of the probability weighting
urve gets directly translated into higher revealed risk tolerance. For m D 2 and a given
bserved discount weight Q �.t / D w.st /�.t / , 

V0 .
z P / D 

�
.u.x1 / � u.x2 //z w .p/ C u.x2 /

�
w.st /�.t / > 

V0 .P / D 

�
.u.x1 / � u.x2 // w.p/ C u.x2 /

�
w.st /�.t /: 

(14) 

hus, the presence of survival risk makes people appear more risk tolerant for delayed
rospects than for present ones. Intuitively, the event of something going wrong takes
n the role of the perceived sure outcome, which makes x2 an intermediate one and,
hus, less salient to the decision maker. In addition, this risk-tolerance increasing effect
s particularly strong for small probabilities, that is, positively skewed prospects are
ubject to more pronounced increases in risk tolerance, as z w .p /= w.p / declines in p
see Proposition 1 in Online Appendix B.2). Such a prediction would not be possible if
he utility function were the carrier of delay dependence, as for instance in Eisenbach
nd Schmalz (2016 ). 

Our prediction is also at odds with Baucells and Heukamp (2012 )’s model, which
eatures a time-dependent probability weighting function g.p; t / D g.p exp . �rx t // ,
here rx denotes a probability discount rate. This probability discount rate looks prima
ista similar to the probability of prospect survial s in our model, but unlike s, also
epends on outcome magnitude x. Furthermore, in our model the probability weighting
unction 

z w .p/ D w.p exp . �. � ln s/t // 

w.exp . �. � ln s/t // 
; 

dditionally involves the denominator w.exp . �. � ln .s//t // , which ensures that z w 

ncreases in t , whereas g decreases in t . Thus, Baucells and Heukamp (2012 ) can
nly explain that risk tolerance increases in t if they invoke an additional assumption,
amely, that rx decreases in x. 

The delay dependence of observed probability weights z w is illustrated in Figure 2 .
he top row of the figure characterizes preferences in the atemporal case. Panel
(a) shows a typical specimen of a subproportional probability weighting function w
or t D 0 , underweighting large probabilities and overweighting small probabilities
f the best outcome. For illustrative purposes, Panel 1(b) on the right side depicts
he corresponding decision weights �i for a prospect involving 21 equiprobable
utcome levels, with outcome rank 1 denoting the best outcome and outcome rank
1 denoting the worst one. Their objective probabilities pi D 1=21 are represented
n the horizontal gray line. As one can see, w generates strong overweighting of the
xtreme outcomes and underweighting of the intermediate ones relative to the objective
robability distribution. 

The bottom row of Figure 2 demonstrates the predictions for the case when
rospects are played out and paid out simultaneously in the future, the focus of this
ection. Future uncertainty is captured by the parameter s D 0:8 , that is, the per-
eriod prospect survival rate is perceived to be 80 % . When payoffs are delayed by
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FIGURE 2. Prediction #1. Delay dependence of risk tolerance. The figure contrasts atemporal 
probability and decision weights with weights delayed by t D 2 periods. For purposes of illustration, 
the probability weighting curves are derived from Prelec (1998 )’s two-parameter probability 
weighting function w.p/ D exp . �ˇ. � ln .p//˛/ , assuming degrees of subproportionality ˛ D 0:5 

and of convexity ˇ D 1 . Survival risk s is set at 0.8 per period. Top row—(1) Atemporal: The 
graphs show atemporal probability weights w (Panel 1(a)) and their associated decision weights �
(Panel 1(b)) for a prospect involving 21 equiprobable outcomes, with outcome rank 1 denoting the 
best outcome. Their objective probabilities are represented on the horizontal gray line. Bottom row—
(2) Delayed: Panel 2(a) and 2(b) show z w and Q � for a delay of two periods when uncertainty resolves 
at t D 2 . 
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wo periods, t D 2 , observed probability weights z w shift upwards, as shown in Panel
(a). This shift rotates the decision weights Q �i counterclockwise, as depicted in Panel
(b). Now the worst outcomes are underweighted, while the best ones are more strongly
verweighted. For longer time delays, these effects become more pronounced and may
ead to a substantial underweighting of the worst outcomes. Thus, underweighting of
dverse extreme events becomes more pronounced with longer time horizons. 
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.2. Prediction #2: Delay Dependence of Patience 

he following section picks up the main topic of Halevy (2008 )’s work and is dedicated
o the fact that observed discount rates decrease with the length of delay, that is, exhibit
 hyperbolic decline. Allegedly guaranteed future payoffs constitute a special case of
isky ones. As is evident from equation ( 12 ), the observed discount weight for time
quals Q �.t / D w.st /�.t / . Clearly, if w is linear, Q � declines exponentially irrespective of
he magnitude of s. To see this, note that �.t / D exp . ��t / and st D exp . �. � ln .s//t / ,
mplying a discount rate Q � D � � ln .s/ > � for s < 1 . In this case, uncertainty per se
ncreases the absolute level of revealed impatience, but it cannot account for declining
iscount rates. Thus, an expected utility maximizer will exhibit a constant discount
ate that is higher than her underlying rate of pure time preference, but her behavior
ill not show any of the interaction effects addressed in this paper. If, however, w
s subproportional and s < 1 , the component w.st / distorts the discount weight in a
redictable way (see details in Proposition 2 in Online Appendix B.3): The discount
unction Q �.t / declines at a decreasing rate, that is, in a hyperbolic way. To show this
esult, we set � D 1 without loss of generality. The rate Q �.t / at which w.st / declines
s defined as 

Q �.t / D �
∂w.st / 

∂t 

w.st / 
D �w0 .st /st ln s 

w.st / 
D �".st / ln s; (15) 

here " denotes the elasticity of w. Note that subproportionality of w is equivalent to
ncreasing elasticity. Therefore, 

Q �0 .t / D �"0 .st /st .ln s/2 < 0; (16) 

ince the elasticity of w is increasing. As Chakraborty, Halevy, and Saito (2020 ) have
larified, subproportionality not only predicts hyperbolic discounting, but the reverse
elationship also holds in our setting. 

Thus, decreasing impatience is not necessarily a manifestation of pure time
references but a consequence of survival risk changing the subjective nature of future
rospects. At the level of observed behavior, decreasing impatience is the mirror image
f increasing risk tolerance if survival risk is integrated into the prospect’s probability
istribution. In fact, the degree of proneness to common ratio violations, the degree of
ubproportionality, can be interpreted as the degree of time insensitivity. Because more
mmediate payoffs are more likely to actually materialize than more remote payoffs,
his potential is perceived to decline with the passage of time and becomes almost
egligible for payoffs far out in the future. Technically, since shifting a payoff into
he future amounts to scaling down its probability, which constitutes an intertemporal
ariant of the Allais common ratio effect, a decision maker with subproportional
references becomes progressively insensitive to a given timing difference. This
nsight provides a test bed for analyzing risk taking and time discounting behavior
t the individual level because the characteristics of the probability weighting function
eed directly into the characteristics of the observed discount function. For example,
 Prelec compound invariant probability weighting function with ˛ < 1 generates a
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Panel (a) :  Varying Survival Risk Panel (b) :  Varying Resolution Periods

FIGURE 3. Predictions #2 and #4. Hyperbolic and subadditive discount rates Q �. Panel (a) shows 
discount rates as they move with the length of delay t for different levels of survival risk 1 � s, where 
s denotes the probability of prospect survival. When there is no survival risk, s D 1 , the observed 
discount rate is constant and equals the rate of pure time preference (line labeled by s D 1:0 ). The 
higher is the level of risk, the lower s, the more pronounced the hyperbolic decline of discount 
rates over time is for decision makers with subproportional probability weights (curves labeled by 
s D 0:5 and s D 0:8 ). Q �.t/ WD � ∂ Q �

∂t = Q �. w is specified as Prelec’s probability weighting function (in 
this example ˛ D 0:5 and ˇ D 1 ). Panel (b) depicts discount rates for a constant level of survival 
probability s D 0:8 and varying number of resolution stages n . The more often a particular delay is 
divided into subintervals (of equal length in this graph), the higher is the discount rate, a manifestation 
of subadditive discounting. 
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onstant Relative Decreasing Impatience (CRDI) discount function, frequently used
o map hyperbolic discounting (Bleichrodt, Rohde, and Wakker 2009 ). 

The effects of survival risk on revealed discount rates are presented in Panel (a) of
igure 3 , which depicts a typical decision maker’s observed discount rates Q � as they
eact to varying levels of s. The horizontal line represents the case of no survival risk,
 D 1 . In this case, the observed discount rate Q � is constant and coincides with the true
nderlying rate of time preference �. When survival risk comes into play, however,
iscount rates decline in a hyperbolic fashion, and depart from constant discounting
ncreasingly strongly with rising uncertainty, as shown by the curves for s D 0:8 and
 D 0:5 , respectively. 

.3. Prediction #3: Process Dependence of Risk Tolerance 

o far, we have considered the case when future prospects are evaluated in one single
hot. In the following section, we analyze the situation of uncertainty resolving in
everal distinct stages. In the domain of risk, sequential resolution of uncertainty
requently reduces a prospect’s value relative to its one-shot counterpart, Observation
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FIGURE 4. One-shot and sequential resolution of prospect risk. (1) One-shot: The probability 
tree depicts uncertainty resolution in one stage. (2) Sequential: The probability tree shows the 
sequential resolution of uncertainty of a prospect P D .x1 ; qr I x2 ; 1 � qr/ in two stages with partial 
probabilities q and r . 
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3. We will first analyze the atemporal case and introduce the passage of time in the
nsuing subsection. 

.3.1. Process Dependence in the Atemporal Case. In order to derive our predictions
or sequential resolution of uncertainty, we need to discuss the method by which multi-
tage prospects are transformed into single-stage ones, the domain over which risk
references are commonly defined. In principle, there are two different transformation
ethods, reduction by probability calculus and folding back.8 Reduction involves the
alculation of the probabilities of the final outcomes and the transformation of these
alues by the appropriate weighting function. Folding back, on the other hand, weights
he probabilities at each stage and then compounds these weights. Segal (1990 ) argues
hat folding back is particularly plausible when the stages are clearly distinct. It is well
nown that a naive RDU decision maker will be dynamically inconsistent if she cares
nly about the probabilities of the final outcomes—as the payment date draws near, she
ill re-evaluate the prospect and, because of the delay dependence of risk tolerance,
ecome comparatively more risk averse. Folding back ensures dynamic consistency
ut has substantial consequences for prospect valuation. 

Experiments on compound risks show that people frequently violate the reduction
xiom of EUT, that is, the value of a prospect resolving in several stages differs from
he value of the probabilistically equivalent one-stage prospect.9 In the following, we
ssume that the decision maker applies folding back when evaluating the prospect
nder consideration. 

Figure 4 depicts the sequential resolution of a two-outcome prospect P D
x1 ; pI x2 ; 1 � p/ in n D 2 stages with partial probabilities q and r and the
orresponding one-shot resolution case. Under folding back, the prospects’ values are
. Segal (1990 ) replaces the reduction axiom by an axiom of compound independence, which ensures 
he applicability of folding back as a transformation mechanism. 

. This violation of the reduction axiom is not necessarily a manifestation of bounded rationality, but 
ay be an expression of a genuine preference (Wakker 1988 ; Segal 1990 ). 
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iven by 

V1 .P / D .u.x1 / � u.x2 // w.qr/ C u.x2 /; 

nd 

V2 .P / D .u.x1 / � u.x2 // w .r/ w .q/ C u.x2 /; 

here the subscripts of V denote the number of resolution stages. As already
oted, and discussed in detail in Segal’s work (Segal 1987a , b , 1990 ), the certainty
ffect embodied in subproportional preferences generates an aversion to compounded
robability weights: For 1 > p D qr > 0 , the compounding of the respective weights
lways leads to lower prospect values, that is, w.qr/ > w.q/ w.r/ holds whatever are
he values of q and r . Here, the order of r and q, that is, which probability resolves first,
oes not play a role, a feature labeled event commutativity (Chung, von Winterfeldt, and
uce 1994 ). Furthermore, a prospect’s minimum value is attained when compounding
ccurs over equiprobable stages, that is, when r D q D p 

p . Partitions of equal length
orrespond to the least degenerate multi-stage prospect and can be interpreted as
he comparatively most vague situation, which is strongly disliked by people with
ubproportional preferences.10 

When the prospect under consideration is more complex than the 2-outcomes-2-
tages case, uncertainty may resolve in many different ways. This raises the question
hether subproportionality always implies a preference for one-shot resolution of
ncertainty, irrespective of the resolution pattern. As Dillenberger (2010 ) has shown,
 preference for one-shot resolution of uncertainty does not hold generally in RDU
ith subproportionality. For details see our discussion in Online Appendix E.2. Here,
e focus on sequential resolution in the form of prospect survival, that is, we only
onsider probability trees that, at each stage, render either x2 or the chance that x1 

s still available at a later stage. We term trees with this structure “survival trees”.
or example, a third stage with partial probability v could be appended to the tree in
igure 4 , such that x1 materializes with probability qrv. For survival trees with m D 2

utcomes, Segal’s insights on two-stage prospects generalize to n > 2 stages, that is,
.
Q n 

iD 1 qi / >
Q n 

iD 1 w.qi / for 
Q n 

iD 1 qi D p, as shown in Proposition 3 in Online
ppendix B.5. 
For m > 2 , another type of survival tree emerges when, at each stage, either the

orst possible outcome materializes or “everything is still possible,” which could be
ny number of probabilistic outcomes that materialize at the final stage. Thus, the
urvival tree has two branches at all the chance nodes before the final stage, and m
ranches at the terminal resolution of uncertainty. An example for m D 3 outcomes
nd n D 3 stages is discussed in Online Appendix B.4. Subproportionality makes clear
0. Because of this characteristic, Segal (1987b ) proposes to model ambiguity aversion by 
ubproportional risk preferences over two-stage lotteries. Dillenberger and Segal (2014 ) show that such an 
pproach has another attractive implication: It is able to solve Machina (2009 , 2014 )’s paradoxes, which 
nvolve a number of situations where standard models of ambiguity aversion are unable to capture plausible 
eatures of ambiguity attitudes (Baillon, l’Haridon, and Placido 2011 ). 
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redictions for this type of sequential resolution of uncertainty as well: The prospect’s
ne-shot value will be greater than its folded back version. Thus, such a resolution
rocess has the flavor of disappointment aversion since at each stage something better
han xm 

may turn out to be unreachable. For n resolution stages and m outcomes, the
esulting probability weighting function for 

Q n 

iD 1 qi D p is given by 

wn 

.p/ D
n Y 

iD 1 

w.qi /: (17) 

etails are set out in Proposition 3 in Online Appendix B.5. 
The top row of Figure 5 shows the basic probability weighting function and the

ecision weights of 21 equiprobable outcomes when uncertainty resolves in one-shot.
n the bottom, the probability weighting function and the corresponding decision
eights are displayed that result from compounding over twelve stages of equal
artial probability when uncertainty resolves along a survival tree. As one can see,
he originally inverse S-shaped probability weighting function is transformed into
 strongly convex one. The decision weight curve now rotates clockwise, implying
ubstantial underweighting of the best outcomes and overweighting of the worst
utcomes, as is evident in Panel 2(b). Thus, compounding probability weights greatly
educes risk tolerance. Sequential valuation of this type, therefore, has a dramatic
ffect on the overweighting of adverse tail events. This effect may be called myopic
robability weighting in the style of myopic loss aversion (Benartzi and Thaler 1995 ),
hich has similar consequences on risk taking behavior when short-sighted investors
re frequently exposed to the possibility of facing losses. 

To sum up: If uncertainty resolves according to a survival tree, under
ubproportionality, one-shot resolution is always preferred to sequential resolution of
ncertainty. 

.3.2. Process Dependence of Risk Tolerance and the Passage of Time. The property
f aversion to compound risk carries over to the case when the passage of time with
ts inherent uncertainty is introduced. In our view, this situation constitutes a much
ore interesting case than the frequently observed aversion to sequential resolution in
temporal experimental settings. However, we are not aware of any studies involving
he sequential resolution of uncertainty of genuinely delayed prospects. Thus, the
ollowing insights provide the basis for novel experimental investigations. 

In the following, we set � D 1 for ease of exposition. Let us first consider a
wo-outcome prospect P D .x1 ; pI x2 ; 1 � p/ resolving in n D 2 stages denoted by
orresponding subscripts to z w and Q �, such that uncertainty is partially resolved at some
uture time t1 and fully resolved at the payment date t > t1 , as depicted in Panel (ii) of
igure 6 .11 Applying folding back, the resulting two-stage prospect is evaluated as 
1. A more complex survival tree is displayed in Figure B.2 in Online Appendix B.4. 
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FIGURE 5. Prediction #3. Preferences for one-shot resolution of atemporal uncertainty. The 
figure contrasts probability and decision weights for one-shot resolution of uncertainty with the 
weights for sequential resolution along a survival tree if the passage of time does not play a role. 
For purposes of illustration, the curves are derived from Prelec (1998 )’s two-parameter probability 
weighting function w.p/ D exp . �ˇ. � ln .p//˛/ , assuming degrees of subproportionality ˛ D 0:5 

and of convexity ˇ D 1 . Top row—(1) One-shot: The graphs show probability weights w (Panel 
1(a)) and their associated decision weights � (Panel 1(b)) for a prospect involving 21 equiprobable 
outcomes, with outcome rank 1 denoting the best outcome when uncertainty resolves in one- 
shot. Their objective probabilities are represented on the horizontal gray line. Bottom row—(2) 
Sequential: Panel 2(a) and 2(b) show the compounded probability weights wn .p/ D Q n 

iD 1 w.qi / 

and the corresponding decision weights �n when uncertainty resolves in n D 12 equiprobable stages, 

qi D p1=12 along a survival tree. 
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FIGURE 6. One-shot and sequential resolution of prospect and survival risk. (1) One-shot: The 
probability tree depicts uncertainty resolution of a prospect .x1 ; pst I x2 ; .1 � p/st I N x ; 1 � st / in one 
stage. (2) Sequential: The probability tree shows the sequential resolution of uncertainty of the same 
prospect in two stages with partial probabilities .p1=t s/t

1 and .p1=t s/t�t
1 . 
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�
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1 / w .st�t
1 / 

C u.x2 /

1 

C A 

w .st
1 / w .st�t

1 / 

D ��
u.x1 / � u.x2 /

� z w2 .p/ C u.x2 /
� Q �2 .t /; (18) 

hich yields the relationships 

z w2 .p/ D
w

�
p

t
1 
t st

1 

�
w

�
p

t�t
1 

t st�t
1 

�
w .st

1 / w .st�t
1 / 

; (19) 

nd 

Q �2 .t / D w .st
1 / w .st�t

1 /; (20) 

here Q �2 .t / is interpreted as the discount weight attached to the allegedly certain
utcome x2 . Subproportionality ensures that 

z w2 .p / D
w

�
p

t
1 
t st

1 

�
w

�
p

t�t
1 

t st�t
1 

�
w .st

1 / w .st�t
1 / 

<
w.p st / 

w.st / 
D z w .p /; (21) 

hat is, under folding back observed risk tolerance is smaller than in the one-shot case,
ne of the main results generalized in Proposition 4 in Online Appendix B.6 where
e provide a characterization of z wn 

. Furthermore, total prospect value is also smaller
han for one-shot resolution as both w.pst / and w.st / are greater than any products of
robability weights of partial probabilities. Thus, the preference for one-shot resolution
f uncertainty is preserved when “something may go wrong.” Probability weights z w 
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FIGURE 7. Preferences for the resolution of uncertainty with survival risk. The figure shows 
the impact of one-shot resolution of uncertainty versus the sequential resolution of uncertainty 
along a survival tree in the presence of survival risk when the prospect under consideration is 
delayed by t D 2 periods. For purposes of illustration, the curves are derived from Prelec (1998 )’s 
compound invariant probability weighting function w.p/ D exp . �ˇ. � ln .p//˛/ , assuming degrees 
of subproportionality ˛ D 0:5 and of convexity ˇ D 1 . Top row—(1) One-shot: The graphs show 

delay-dependent probability weights z w (Panel 1(a)) and their associated decision weights Q � (Panel 
1(b)) for a prospect involving 21 equiprobable outcomes, with outcome rank 1 denoting the best 
outcome. Their objective probabilities are represented on the horizontal gray line. Bottom row—(2) 
Sequential: Panel 2(a) and 2(b) show z wn .p/ D .w..pst /1=n / =w..st /1=n / /n and the corresponding 
decision weights �n when uncertainty resolves along a survival tree in n D 24 equiprobable stages. 
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nd z wn 

as well as their corresponding decision weights Q � and Q �n 

are depicted in
igure 7 , which show the same patterns as for the atemporal case of Figure 5 , but
ess pronounced because delay dependence shifts the original atemporal probability
eights upwards. 
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.4. Prediction #4: Process Dependence of Patience 

bservation # 4 pertains to the finding that discount rates compounded over partial
eriods are higher than discount rates applied to the total period under consideration,
o-called subadditive discounting . As we will see shortly, we can transfer all our
nsights for the sequential resolution of uncertainty to discounting behavior as allegedly
ertain future outcomes are a special case within the class of two-outcome prospects.
ccording to our model, an allegedly certain outcome x payable at delay t is perceived
s a risky future prospect .x; st I N x; 1 � st / . Suppose now that future uncertainty
esolves in two stages, first at t1 and finally at t . Coming back to Figure 4 , redefine

2 as N x and the partial probabilities as survival probabilities, q D st
1 and r D st�t

1 .
ubproportionaliy implies w.st / > w.st

1 / w.st�t
1 / , in other words discounting is

ubadditive, described as Observation #4. As before, this result holds for any number
f resolution stages, and the more stages are involved the stronger the compounding
ffect. Moreover, discounting over equal partial periods constitutes the most aversive
ase. 

Panel(b) of Figure 3 shows the effect of varying the number of compounding
tages on observed discount rates. As predicted, discount rates increase in the number
f stages. In our model, subadditive discounting is the result of decision makers’
version to compounded probability weights and not a feature of pure time preferences
hemselves, as often posited in the literature. 

.5. Prediction #5: Preferences for the Timing of Uncertainty Resolution 

xperimental research found a quite puzzling result: A substantial share of participants
refer uncertainty to be resolved at the payment date, even in circumstances when one
ould expect that it is advantageous to know the outcome of one’s financial decisions
s early as possible. In this section, we explore the consequences of subproportionality
or the preferences for the timing of uncertainty resolution. 

Figure 8 depicts two different cases of the timing of uncertainty resolution: either
he prospect is played out at the payment date, corresponding to one-shot resolution
nd labeled “late” (Panel (i)), or the prospect is played out immediately after prospect
aluation, labeled “immediate” (Panel (ii)). In the latter case, the decision maker will
now the outcome right after her decision and faces only survival risk. Contrasting the
esulting prospect values, 

V0 .
z P /late D ..u.x1 / � u.x2 //

w.pst / 
w.st / 

C u.x2 // w.st /�.t / > 

V0 .
z P /immediate D ..u.x1 / � u.x2 // w.p/ C u.x2 // w.st /�.t /; 

(22) 

hows that late resolution is always preferred as w .pst /= w .st / > w.p/ is implied by
ubproportionality. Thus, if no other considerations, such as being able to make better
uture plans, play a role, a subproportional decision maker will exhibit a preference
or late resolution of uncertainty. In fact, she will prefer resolution at t to any earlier
esolution time t < t , as shown in Online Appendix B.7. 
1 
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FIGURE 8. Late and immediate resolution of prospect risk. (1) Late: The probability tree depicts 
uncertainty resolution in one stage at the payment date t . (2) Immediate: The probability tree shows 
the immediate resolution of prospect risk, with survival risk resolving at t . 
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In our view, that subproportional risk preferences induce an intrinsic preference
or late resolution of prospect risk constitutes the third important result besides delay-
nd process-dependence. If decision makers perceive the future as inherently risky
nd apply folding back, this property follows endogenously from subproportionality
nd does not constitute an independent preference as in the theoretical literature on
esolution timing (Kreps and Porteus 1978 ; Chew and Epstein 1989 ; Grant, Kajii,
nd Polak 2000 ). Moreover, our model not only predicts a general preference for late
esolution of prospect risk, it also specifically addresses skewness preferences because
he effect is larger for small probabilities (see Proposition 5 in Online Appendix B.7),
hich cannot be handled by utility-based explanations. Additionally, this preference
or late resolution of uncertainty of positively skewed prospects increases with time
elay. 

.6. Prediction # 6: Risk Dependence of Patience 

esearchers have been puzzled not only by delay-dependent risk tolerance and
references with respect to resolution timing but also by other interactions between
ime and risk, encompassing risk-dependent discounting and diminishing immediacy:
ertain outcomes tend to be discounted much more heavily than risky outcomes are.
s we will show below, these findings can be naturally accommodated within our
ramework. 

Let V0 denote the present value of the prospect P D .x1 ; pI x2 ; 1 � p/ delayed by
 periods. Hence, for � D 1 , 

V0 D
�

.u.x1 / � u.x2 //
w.pst / 

w.st / 
C u.x2 /

�
w.st /: (23)

urthermore, let Vt denote the future value of P as of t : 

Vt D
�
u.x1 / � u.x2 /

�
w.p/ C u.x2 / : (24)
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iscounting by w.st / yields 

Vt w.st / D ..u.x1 / � u.x2 // w.p/ C u.x2 // w.st /: (25) 

According to standard discounting theory, the present value V0 should be
qual to the discounted value of Vt , namely, Vt w.st / . However, because w.p/ <

 .pst /= w .st / , actually Vt w.st / < V0 . Therefore, it seems as if the certain value

t is discounted more heavily than the (at t equally attractive) future prospect. The
ifference in the valuations is not caused by different rates of time preference for risky
nd certain payoffs; however, but by survival risk changing the nature of the future
rospect when evaluated from the point of view of the present rather than from the
oint of view of the future. 

The same kind of risk dependence is at work when the revealed preference for a
ertain smaller present payoff over an allegedly certain larger later payoff decreases
ubstantially when both payoffs are made (objectively) probabilistic, a phenomenon
ermed diminishing immediacy, which inspired Halevy (2008 )’s work. Because of the
ertainty effect, the additional layer of riskiness affects the later payoff much less than
he present one as it is viewed as a risky prospect already from the outset due to survival
isk. 

.7. Prediction #7: Order Dependence of Risk Tolerance 

rder dependence refers to the phenomenon that it makes a difference in which order
 prospect is discounted for risk and for time. In principle, there are three different
ethods of establishing a decision maker’s value of a prospect P D .x1 ; pI x2 ; 1 � p/

elayed by t periods: the risk-first order, the time-first order, and the direct method by
hich both operations are performed simultaneously. 
The risk-first order assesses the certainty equivalent as of time t at the first stage

nd its present value at the second stage. The time-first order reverses the elicitation
tages and encompasses, at the first stage, the elicitation of the present risky prospect,
hich is considered to be equivalent to the future one and, at the second stage, the
licitation of the certainty equivalent of this present risky prospect. The direct method,
nally, elicits the present certainty equivalent of the delayed prospect in one single
peration. 

When the decision maker is required to state the prospect’s value when discounting
olely for risk, she ignores the dimension of time and reports Vt , which gets discounted
o Vt w.st / at the second stage: 

Vt w.st / D ..u.x1 / � u.x2 // w.p/ C u.x2 // w.st /: (26) 

onversely, when discounting for time first, she states the present prospect, which is
quivalent to the delayed one. Discounting for risk at the second stage results in its
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TABLE 3. Global parameter values. 

Function Specification Parameter Value 

Probability weighting Compound invariant ˛: subproportionality 0.50 
ˇ: convexity 0.95 

Utility Power � : curvature 0.80 

Time discounting Exponential �: rate of time preference 0.10 

Notes: The functions are specified as follows. Prelec (1998 )’s compound-invariant probability weighting function: 
w.p/ D exp . �ˇ. � ln .p//˛/ . Power utility function: u.x/ D x� . Time discount function: �.t/ D exp . ��t/ . 
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alue V0 , evaluated as 

V0 D
�

.u.x1 / � u.x2 //
w.pst / 

w.st / 
C u.x2 /

�
w.st /; (27)

hich is equal to the present value elicited by the direct method. 
Due to subproportionality, w .pst /= w .st / > w.p/ . Therefore, we predict that

iscounting for risk first results in a lower prospect value than discounting for time
rst. Moreover, discounting for time first is equivalent to prospect evaluation in one
ingle operation. 

. Quantitative Assessment 

n the following, we address two issues: First, while our model is capable of
ualitatively explaining all seven types of observations, it is not clear whether it also
akes meaningful quantitative predictions. Second, one of the main drivers of the
odel is the subjective perception of future uncertainty. Can we be confident that it
s actually this variable that impacts behavior? 

Dealing with the first issue, the question is whether the model requires vastly
ifferent parameter values to explain the various phenomena or whether it is possible
o explain them with a set of parameters within a relatively narrow and plausible
ange.12 To address this question, we tie our hands and assume a fixed set of preference
arameter values for (i) the utility curvature, (ii) the degrees of subproportionality
nd convexity of probability weights, and (iii) the rate of pure time preference, as
pecified in Table 3 . These parameter values are suggested by typical estimates in
he literature (see, e.g., Abdellaoui, Diecidue, and Öncüler (2011b ); Epper, Fehr-
uda, and Bruhin (2011 ); Fehr-Duda and Epper (2012 )). We estimate the annual
urvival probabilities s� by minimizing the sum of squares of the deviations of the
ctual observed quantities and the values predicted by our model given the fixed
reference parameters. That is, s� is the only free parameter to be estimated. To
ssess the accuracy of the predictions of our model in the different experimental
2. We thank an anonymous referee for proposing this calibration exercise. 
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onditions (e.g., different delays, probabilities, resolution frequencies, or timings),
e contrast the observed quantities reported in the respective publication with those
redicted by our model using the estimated survival probability and fixed preference
arameter values. 

Ideally, for a given participant sample at a given point in time, and a given
licitation method, the estimated value of s should be rather similar across experiments
ecause in this case, the participants would have little reason to reveal different
egrees of subjective uncertainty that “something may go wrong.” However, the seven
egularities we discussed have been documented at different points in time, with
ifferent elicitation methods, and with rather different participant samples—French,
wiss, Swedish, and US participants. Table C.1 in Online Appendix C summarizes
he experimental studies we used for our task. Therefore, the best we can hope for
s that the estimated value of s is roughly in a similar ballpark across the different
xperiments. In addition, because all studies have been conducted with university
tudents in Western countries with well-developed property rights, the estimated value
f s should not be unreasonably low (e.g., below 0.5 or 0.6 p.a.). As we will see below,
ur quantitative estimates nicely confirm these expectations. The typical value of the
urvival probability across experiments is around 0.9 and never below 0.825. Thus, all
even phenomena can be quantitatively explained with a plausible and identical set of
reference parameter values and a narrow and plausible range of survival probabilities.

Regarding the second issue, it is not obvious that the estimated level of survival
robability s actually captures people’s perceived uncertainty. To underpin the
redibility of our approach, we present data on participants’ perceptions and relate
hem to the magnitudes of s estimated at the individual level. It turns out that people
ho reported some uncertainty with respect to obtaining future payments exhibit
ignificantly lower levels of survival probability, corroborating our approach. 

.1. Observation #1: Probability Weights Increasing with Delay 

o demonstrate the quantitative implications of our approach, we proceed as follows.
ccording to our framework, the driver of risk tolerance increasing with delay are
elay-dependent probability weights. Delay-dependent risk tolerance was observed
n many experiments, but only a very few provide estimates of suitable probability
eights. One particularly useful example is Abdellaoui et al. (2011a )’s investigation
f the source dependence of uncertainty attitudes. Their experiment also involved pure
isk, that is, given objective probabilities, as a special source for which uncertainty
esolved at the payment date 3 months after the experimental sessions. Abdellaoui et al.
2011a ) assume a Prelec (1998 ) compound-invariant probability weighting function
nd report O ̨D 0:67 and O ˇ D 0:76 for the delayed weights wtD 3 .p/ (see their Figure 9
n page 713). Now, what is the level of survival probability s such that their delayed
eights wtD 3 .p/ can be interpreted as z w .p/ based on the atemporal weights wtD 0 .p/

enerated by our global parameter values? We estimate s by minimizing the sum of
quares of the difference between wtD 3 and z w . This exercise yields an estimated s� of
.825 p.a., which we deem a very plausible number. In other words, subjects behaved
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INCREASING RISK TOLERANCE. Figure (9) The green dashed curve corresponds to the atemporal 
probability weighting function, wtD 0 , generated by our global parameter values. The red solid curve 
depicts the probability weighting function estimated by Abdellaoui et al. (2011a ) for uncertainty 
resolution in 3 months, wtD 3 (see Panel (b) in their Figure 9 on page 713). The blue crossed curve 
results from the global parameter values of Table 3 and a survival probability of s� D 0:825 . 
Table (4) For each of the five probabilities in Abdellaoui et al. (2011a ), the table contrasts 

observed decision weights of the better outcome with decision weights predicted by our model with 
global parameter values and s� D 0:825 . The observed weights are computed using the probability 
weighting function estimated by Abdellaoui et al. (2011a ). 
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s if they thought outcomes payable in 1 year would actually materialize with a 82:5 %
hance. As one can see in Figure 9 , the curve of z w for this level of s� closely matches
he actual reported curve wtD 3 . 

.2. Observation #2: Hyperbolic Discounting 

pper, Fehr-Duda, and Bruhin (2011 ) elicited both time preferences and risk
references of a student sample.13 Comparing the average annualized discount rates
bserved for a 2-month delay and a 4-month delay shows the usual picture: they
ecline from 0.368 to 0.299 when the delay increases (all these numbers can be found
n the first column of their Table 2 on page 183 of the paper). Assuming that the
iscount rates are generated by the theoretical discount weights w.st / exp . ��t / , we
stimate s by minimizing the sum of squared deviations between observations and
odel predictions. This procedure yields s� D 0:947 , resulting in prediced discount
ates of 0.372 for the 2-month delay, and 0.293 for the 4-month delay, shown in Table 5 ,
hich are very close to the observed values. 
3. Based on the risk taking data, Epper, Fehr-Duda, and Bruhin (2011 ) estimated the mean Prelec 
D 0:505 and the mean ̌ D 0:974 , which lie very close to our global parameter values. 
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TABLE 5. Hyperbolic discounting—observed versus predicted discount rates. 

Delay Observed Predicted 

2 months 0.368 0.372 
4 months 0.299 0.293 

Notes: The table lists observed and predicted annualized discount rates for the two different time delays in Epper, 
Fehr-Duda, and Bruhin (2011 ). The observed rates can be found in the first column of Epper, Fehr-Duda, and 
Bruhin (2011 )’s Table 2 (p. 183). The predicted rates result from our model with the global parameter values of 
Table 3 and s� D 0:947 . 

TABLE 6. Process dependence—observed versus predicted certainty equivalents. 

Prospect Condition Observed Predicted 

. 50; 1=12 I 0/ One-shot 9.910 11.184 
Sequential 9.250 7.182 

. 50; 1=2 I 0/ One-shot 22.650 22.671 
Sequential 20.720 19.052 

. 50; 11=12 I 0/ One-shot 37.740 37.781 
Sequential 34.720 35.435 

Notes: The table lists certainty equivalents documented in Table 2 on page 1310 of Abdellaoui, Klibanoff, and 
Placido (2015 ) for one-shot and sequential resolution (their “CRG” condition). The predictions are obtained with 
the global parameter values of Table 3 . 
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.3. Observation #3: Preference for One-Shot Resolution of Uncertainty 

o the best of our knowledge, the process dependence of risk taking behavior has not
een investigated experimentally in situations when there is actually a substantial time
elay present. Experimental tasks are typically based on one-stage and distributionally
quivalent multi-stage prospects that are resolved almost immediately. In other words,
he survival probability s is irrelevant in such situations. Thus, we will illustrate
n atemporal version of the preference for one-shot resolution of uncertainty over
equential resolution by (i) documenting that the predicted certainty equivalents of
ne-shot resolved prospects are higher than those of sequentially resolved prospects,
nd (ii) by comparing the actually observed certainty equivalents with the estimated
ertainty equivalents resulting from our assumptions. 

Abdellaoui, Klibanoff, and Placido (2015 ) report mean certainty equivalents for
imple prospects of the form .50; pI 0; 1 � p/ (their Table 2 on page 1310) that are
esolved in one stage or in two stages. Table 6 shows that one-shot certainty equivalents
re always higher than sequential ones, and the estimated values, based on our global
arameter values, are reasonably close to the observed ones, particularly for the
robabilities 1=2 and 11=12 . For p D 1=12 , the model overestimates the difference
etween one-shot and sequential values.14 
4. Regarding the other features of our model, event commutativity and aversion to equiprobable stages, 
he evidence so far is mixed. For a review, see Fan, Budescu, and Diecidue (2019 ). 
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TABLE 7. Subadditive dscounting—observed versus predicted discount fractions. 

Discount Fraction Observed Predicted 

f .0; 2/ 0.927 0.893 
f .2; 4/ 0.941 0.893 
f .0; 4/ 0.886 0.852 
f .0; 2/f .2; 4/ 0.872 0.797 

Notes: The table lists discount fractions for various payment dates and the relevant product. Observed values 
are derived from the values shown in Table 2 of Epper, Fehr-Duda, and Bruhin (2011 ) (p. 183). Predictions are 
derived by our model with the global parameter values of Table 3 and s� D 0:947 . 
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.4. Observation #4: Subadditive Discounting 

o illustrate the quantitative implications of our model, we examine the discounting
ata of Epper, Fehr-Duda, and Bruhin (2011 ) again. In the experiment, future
quivalents FEs of a fixed sooner amount of CHF 60 were elicited for various time
elays. We define the observed discount fraction as 

f .ti ; tj / D
60 

FE 

; 

here ti is the payment date for the sooner amount 60 and tj the payment date for
he later amount FE (Read 2001 ). If the product f .t1 ; t2 /f .t2 ; t3 / is smaller than
he discount fraction over the total period, f .t1 ; t3 / , then discounting is subadditive.
ccording to our model, indifference between sooner and later payments is given by 

u.60/ w.st
1 / exp . ��t1 / D u.FE / w

�
st

2 
�t

1 

�
w

�
st

1 

�
exp . ��t2 / : 

ssuming power utility with parameter � , the discount fraction equals to 

f .t1 ; t2 / D
60 

FE 

D
�

w.st
2 
�t

1 / exp . ��t2 / 

exp . ��t1 / 

� 1 
�

: 

iven the estimated survival probability derived for the same data set of Observation
2, s� D 0:947 , the following predictions for the discount fractions result, listed in
able 7 . Both the observed mean discount fractions and the predicted ones clearly
xhibit subadditivity, with predictions fitting fairly well. 

.5. Observation #5: Preference for Late Resolution of Uncertainty 

rai (1997 ) measured strength of preference (SOP) toward resolution timing for
elayed prospects that varied by outcome probability and time delay. In this case,
e do not have present certainty equivalents at our disposal but have to rationalize
OP values. We report Arai (1997 )’s findings on the prospect .5000; pI 0; 1 � p/ listed
n Table 1 on page 20 of his paper. SOP was measured on a scale divided into 30
qual intervals, with SOP D 0 denoting strong preference for immediate resolution
nd SOP D 30 denoting strong preference for late resolution. Thus, SOP D 15 signals
ndifference between immediate and late resolution of uncertainty. 
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TABLE 8. Resolution timing—W .p; t / and SOP. 

t D 1=4 t D 2 t D 10 

p W .p; t / SOP W .p; t / SOP W .p; t / SOP 

0.05 1.16 16.4 1.46 17.0 2.03 17.8
0.35 1.15 15.6 1.41 16.5 1.77 18.2
0.65 1.14 12.4 1.35 14.4 1.55 17.2
0.95 1.11 12.3 1.18 13.9 1.21 16.9

Notes: The table shows wedges W.p; t/ D w.pst / =w .p/ w .st / predicted by our model with global parameter 
values of Table 3 and s D 0:9 and observed strength of preferences values reported in Arai (1997 ) (Table 1 on 
page 20). 
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Arai (1997 ) finds a very distinct pattern of SOP depending on time delay and
robability: the smaller the probability and the longer the time delay, the stronger
he preference for late resolution. Our task is to predict the patterns observed by Arai
1997 ). For this purpose, we examine the wedge W .p; t / WD w .pst /=. w .p/ w .st //;

hich measures the decision weight for late resolution relative to the decision weight
or immediate resolution of uncertainty. We hypothesize that it is more likely to observe
OP > 15 in favor of late resolution for greater values of the wedge W .p; t / . We
alculate W .p; t / by assuming our global parameter values and survival probability
 D 0:9 , which lies in the range of s� found for the other phenomena (see Table 12
elow.) 

Table 8 shows a totally consistent picture, W .p; t / is predicted to decrease in p
nd increase in delay t , capturing the patterns in the observed SOP measures. The
pearman rank correlation coefficient between SOP and W .p; t / amounts to 0.902,
hich we deem an exceptionally high value. 

.6. Observation #6: Diminishing Immediacy 

n their experiments, Weber and Chapman (2005 ) investigated whether delaying an
utcome is equivalent to making it risky. In one of these experiments, participants’
resent certainty equivalents for delayed prospects were elicited through a series
f choices using a bisection algorithm. A total of 124 participants supplied useful
esponses in the immediacy task, which involved hypothetical amounts of $ 100 and
 110 . These amounts were due either immediately or with various time delays, and
ere supposedly certain or risky materializing with a probability of p D 0:5 . 
Working with our global parameters, we estimated the survival probability that

inimizes the sum of squares of differences between observed and predicted values.
his exercise resulted in an estimate of s� D 0:872 , again a very reasonable number. 
Table 9 contrasts observed present certainty equivalents15 with predicted ones.

enerally, we are able to produce quite a good match between observed and
5. Values for present certain $100 were not elicited. 
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TABLE 9. Risk-dependent discounting—observed versus predicted present certainty equivalents. 

Delay Amount Probability Observed Predicted 

0 100 1.0 100.00 100.00 
0.5 38.32 37.21 

4 110 1.0 70.52 81.86 
0.5 35.46 38.02 

26 100 1.0 41.11 39.94 
0.5 23.34 23.40 

30 110 1.0 47.85 40.16 
0.5 23.75 24.03 

Notes: The table lists present certainty equivalents reported in Weber and Chapman (2005 ); Table 5 (p. 111). The 
predicted present certainty equivalents are obtained using our model with the global parameter values of Table 3 
and s� D 0:872 . 

TABLE 10. Diminishing immediacy—predicted discount weights. 

Delay t Amount Probability Discount weight 

4 110 1.0 92:4 % 

0.5 94:3 % 

26 100 1.0 59:8 % 

0.5 69:0 % 

30 110 1.0 55:3 % 

0.5 65:3 % 

Notes: The table lists predicted discount weights for the different delayed prospects in Weber and Chapman (2005 ) 
based on the global parameter values in Table 3 and s� D 0:872 . 
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stimated values, only the present value of 110 materializing in 4 months is
verstated by the model, that is, participants discounted 110 much more heavily than
stimated. According to our model, an allegedly certain outcome payable at delay
 , .x; t / , is evaluated as u.x/ w.st / exp . ��t / . Its risky counterpart is evaluated as
.x/ w.pst / exp . ��t / . Their corresponding non-delayed values amount to u.x/ and
.x/ w.p/ , respectively, implying the discount weights w.st / < w.p st /= w.p / for the
ertain and risky outcomes. Comparing the entries for p D 1 and p D 0:5 for the
arious delays in Table 10 clearly shows a greater loss in value for allegedly certain
utcomes than for risky ones. 

.7. Observation #7: Preference for Time-First Order of Prospect Valuation 

n their study on order dependence, Öncüler and Onay (2009 ) found the following
attern: While valuations of delayed risky prospects resulting from the time-risk
rder (“TR”, discounting for time first and for risk thereafter) and the direct method
“D”, both operations performed simultaneously) are not statistically distinguishable
rom each other, risk-time evaluations (“RT”, discounting for risk first and for time
hereafter) are significantly lower than the ones obtained from the other two methods.
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TABLE 11. Order dependence—observed versus predicted present certainty equivalents. 

Probability Condition Observed Predicted 

0.5 RT 35.94 34.09 
TR 39.83 37.06 

D 39.60 37.06 
0.3 RT 22.07 24.89 

TR 24.44 27.09 
D 24.14 27.09 

Notes: The table shows observed present certainty equivalents reported in Öncüler and Onay (2009 ), Table 1 on 
page 285. The predictions are obtained by our model using the global parameter values of Table 3 and s� D 0:937 . 

TABLE 12. Summary: estimated survival probabilities s�. 

Observation # Output variable s� p.a. Remark 

1 Probability weights 0.825 
2 Discount rates 0.947 
3 Certainty equivalents – Not relevant 
4 Discount fractions 0.947 same as in # 2 
5 Correlation with preference strength 0.900 assumed 
6 Present certainty equivalents 0.872 
7 Present certainty equivalents 0.937 

Notes: The table lists estimated survival probabilities for each observation (see the remarks for exceptions). 
Survival probabilities are estimated by minimizing the sum of square deviations between observed and predicted 
output variables based on the global parameter values of Table 3 . 
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ere, we proceeded as before, we minimized the sum of squared deviations between
bservations and predicted magnitudes based on our global parameter values, which
esulted in an optimal survival probability s� D 0:937 . We report the observed and
redicted present certainty equivalents for the three elicitation methods in Table 11 .
redictions match observations quite well. 

.8. Summary of Quantitative Assessment 

he quantitative assessments conducted in this section were based on the same set
f preferences parameter values. We deliberately tied our hands for the quantitative
redictions by assuming a plausible set of parameter values suggested by the literature.
n this way, we avoid arbitrary degrees of freedom in accommodating the data
nd enable a judgment to what extent our approach indeed facilitates a unifying
xplanation of a diverse set of phenomena. Table 12 shows that the objects of interest
hat needed to be assessed to explain the experimental findings were quite varied—
anging from probability weights to discount rates, from discount fractions to (present)
ertainty equivalents. Our quantitative analysis suggests that the model generally fits
he observations well. Furthermore, as Table 12 reveals, we find that observed behavior
s consistent with plausible values of an annual survival probability in the range of



Epper and Fehr-Duda Risk in Time 341

0  

s  

n
 

d  

s  

o  

t  

r  

i

4

W  

o  

f  

a  

r  

b  

a
 

p  

t  

s  

p  

p  

b  

s

 

s  

n  

U  

p  

U  

r  

1

D
ow

nloaded from
 https://academ

ic.oup.com
/jeea/article/22/1/310/7205504 by guest on 11 February 2024
.825–0.947. In view of the fact that the data were elicited from different participant
amples in different countries and at different points in time, we deem this a remarkably
arrow and plausible range of values for survival probability. 

Recently, a team of researchers conducted an experiment on risk taking and time
iscounting with the explicit objective of estimating the probability of prospect survival
(Islam, Diecidue, and Hardardottir 2022 ). Not only are their results consistent with
ur assumptions on global preference parameter values but also, and most importantly,
hey come up with an average estimate of s of 0.934, which lies nicely within the
ange of our assessments. Thus, Islam, Diecidue, and Hardardottir (2022 ) present an
ndependent measure of s that corroborates our findings. 

.9. The Perception of Future Uncertainty 

hile the quantitative assessments in the previous section renders plausible values
f survival probabilities, it is not a priori clear that s actually captures perceptions of
uture uncertainty or something else. In order to address this issue, we use new data that
llows us to tap into these subjective perceptions. We use data on time discounting and
isk taking of 282 individuals recruited from the Swiss German speaking population,
y a professional survey institute. Details of the experimental design and procedures
s well as the estimation strategy are set out in the Online Appendix D. 

To measure time discounting, we elicited 28 sooner equivalents with a maximum
ayment of CHF 80 and a maximum delay of 8 months. The risk taking tasks involved
he elicitation of 20 certainty equivalents of binary lotteries with outcomes in the
ame ranges as the delayed ones. Furthermore, we asked the participants about their
erceptions of future uncertainty in a questionnaire following the choice tasks. We
osed the following question: “Which of the following factors influenced your choices
etween sooner and later payments?” There were four items pertaining to potential
ources of future uncertainty: 

1. For some reason it may be impossible for me to obtain the money. 

2. It is possible that the money will not be delivered.16 

3. The survey organizers are not trustworthy. 

4. Other factors that cannot be influenced. 

Participants had to report their degrees of agreement with respect to these
tatements by five different response categories: “clearly yes”, “rather yes”, “do
ot know”, “rather not”, and “not at all”. We constructed a binary variable
NCERTAINTY from the respective responses in the following way: Whenever a
articipant responded with “clearly yes” or “rather yes” to any of the four items,
NCERTAINTY was assigned a value of 1, 0 otherwise. 24.1% of the participants
esponded in the affirmative and, consequently, UNCERTAINTY was assigned a value
6. Note that experimental earnings were sent by mail. 
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FIGURE 10. Descriptive results: The dependence of time discounting and risk taking on uncertainty 
perception. Panel (a): The figure plots mean normalized sooner equivalents against the delay t2 in 
months. There were four different delays, t2 2 f 2 ; 4 ; 6; 8 g months. The circles and triangles indicate 
the mean normalized sooner equivalents. The whiskers depict the 95% confidence intervals around the 
means. The confidence intervals were constructed using the bootstrap method with 1,000 replications 
clustered at the individual level. Panel (b): The figure plots mean normalized certainty equivalents 
against the probability of obtaining the better lottery outcome ph . There were seven different 
probability levels, ph 2 f 0:5; 0:1; 0:25; 0:5; 0:75; 0:9; 0:95 g . The circles and triangles indicate the 
mean normalized certainty equivalents. The confidence intervals were again constructed using the 
bootstrap method. The means are slightly horizontally dodged for better visibility. 
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f 1, whereas 75.9% of the participants did not identify any of the potential factors as
elevant for their intertemporal decisions. Consequently, we label these two different
roups “uncertain participants” and “certain participants”, respectively. 

In order to find out whether the uncertain participants differed from the certain
nes with respect to their time discounting and risk taking behaviors, we analyzed the
aw data on sooner equivalents and certainty equivalents for each group separately.
irst, we normalized the respective magnitudes to make them comparable: We elicited
he sooner equivalent x1 at t1 D 0 for a given fixed delayed amount x2 at t2 and
ivided this value by x2 , which resulted in a normalized sooner equivalent x1 =x2 .
e used an equivalent approach for normalizing the certainty equivalent y for a
iven prospect .xh ; ph I xl ; 1 � ph / rendering the normalized certainty equivalent
y � xl /=.xh � xl / . The results of this exercise are displayed in Figure 10 . Panel (a)
hows, conditional on the value of UNCERTAINTY, the normalized sooner equivalents
or different lengths of delay t2 , which can be interpreted as cash discount weights.
learly, sooner equivalents of uncertain participants differ significantly from those
f certain participants: Participants who had voiced concerns about future payments
iscounted future amounts much more heavily with discount weights declining more
teeply. 
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FIGURE 11. Survival probability and the perception of future uncertainty. The figure shows 
information on the distributions of the estimated individual survival probabilities si conditional on 
the values of the binary variable UNCERTAINTY indicating uncertainty perception. The height of 
the colored boxes indicate the interquartile ranges (IQR). The horizontal bold lines dissecting these 
colored areas indicate the medians. The notches, the widths of the indentations around the medians, 
give roughly 95% confidence intervals for comparing the medians, with median ̇ 1:58 � IQR =

p 

n 

being their lower/upper end. The vertical lines, the whiskers, indicate the smallest/largest values at 
most 1:5 � IQR from the boxes’ boundaries. 
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Panel (b) shows the normalized certainty equivalents for various levels of
robability ph . The resulting curve can be interpreted as a probability weighting
unction in the cash domain. Unlike in the discounting case, certainty equivalents do
ot differ between the two groups. Therefore, it is safe to assume that risk preference
arameters do not differ between uncertain and certain participants. 

The question now arises whether there is a significant relationship between
erceived uncertainty, as measured by our binary variable, and the probability of
rospect survival, as estimated according to our modeling approach. According to
he model, participants with UNCERTAINTY D 1 should exhibit lower levels of s
han participants with UNCERTAINTY D 0. To answer this question, we proceeded
s follows: We estimated a model that allows for individual differences in survival
robabilities, but kept the preference parameters constant at the levels defined in
able 3 . It turns out that the distributions of the estimated individual survival
robabilities differ substantially between certain and uncertain participants. The box
lots in Figure 11 display the respective results. Confirming our conjecture, the mean
f the estimated survival probabilities s lies much closer to 1, namely, at 0.873, for
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he participants who reported that uncertainty did not impact their decisions, whereas
he mean for the uncertain participants amounts to only 0.770. To complete our
nalysis, we also estimated a model allowing for individual heterogeneity in risk
nd time preference parameters. As shown in Online Appendix D, the magnitudes
f the estimated survival probabilities change somewhat, but there are still clear
nd substantial differences between certain and uncertain participants. Thus, we can
e confident that the estimated survival probabilities do indeed capture aspects of
ndividual perceptions of future uncertainty. 

. Experimental Findings and Related Literature 

n the following section, we present the experimental literature and previous
xplanations of the observed effects in more detail. As will become evident, so far
one of the contributions provided an integrative view of all the seven phenomena.
 comprehensive list of the relevant experimental papers is included in Online
ppendix A. We also discuss a number of additional papers that are related to our
ork in Section 5.2 . 

.1. Literature Related to the Seven Observations 

urning to the first behavioral phenomenon in our list in Table 1 , delay dependence of
isk taking behavior has been documented by a range of papers that do not distinguish
etween effects of delay on utility and probability weights (Jones and Johnson 1973 ;
helley 1994 ; Ahlbrecht and Weber 1997 ; Sagristano, Trope, and Liberman 2002 ;
oussair and Wu 2006 ; Coble and Lusk 2010 ). That, in fact, probability weights react
o delay, rather than the utility function, was shown experimentally by Abdellaoui,
iecidue, and Öncüler (2011b ). They conducted a carefully designed experiment
liciting probability weights for both present and delayed prospects. Their results
rovide support for our approach as the probability weights of the best possible
utcome, when delayed, are significantly greater than their non-delayed counterparts,
oth in the aggregate as well as for the majority of the individuals. In their study
n ambiguity attitudes, Abdellaoui et al. (2011a ) show estimates of a probability
eighting function derived from choices over prospects delayed by 3 months, which
e used to assess the quality of our predictions. This function is also much more
levated than typical atemporal estimates are, that is, the curve lies above a typical
temporal one; see Figure 9 . 

To the best of our knowledge, there is only one theoretical contribution that derives
he delay dependence of risk tolerance from a set of axioms. Baucells and Heukamp
2012 ) analyze the case of simple prospects Œ.x; pI 0; 1 � p/�t that pay x with
robability p at time t and 0 otherwise. They derive risk tolerance increasing with delay
n the following way. Their fundamental axiom links risk taking and time discounting
y direct assumptions on how people trade-off delays in future outcomes against
eductions in the probability with which these outcomes occur. Additionally, they
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ssume the presence of common ratio effects, which is equivalent to subproportionality.
s already set out in Section 3.1 , the authors derive time-dependent probability weights
.pI t / D g.p exp . �rx t // that, unlike our representation, clearly decrease with delay
 . Thus, they need another crucial assumption to predict risk tolerance increasing with
elay: They make the probability-time trade-off depend on outcome magnitude—the
robability that renders an early prospect equally attractive as a prospect with a fixed
dditional delay declines with outcome magnitude, in other words rx has to decline
n x. Their approach also predicts hyperbolic discounting (Observation #2) (for this
esult, the common ratio effect has to hold as well as decreasing elasticity of the
tility function) and risk dependence of patience (Observation #6), which is a direct
onsequence of the probability-time trade-off under subproportionality. 

It is well known by now that delay dependence is also manifest in discounting
ehavior, which constitutes empirical Observation #2. There is abundant evidence
hat many people exhibit decreasing impatience, that is, their discount rates are not
onstant but decline with the length of delay (among many others Benzion, Rapoport,
nd Yagil (1989 ); Loewenstein and Thaler (1989 ); Ainslie (1991 ); Halevy (2015 )).
his regularity has triggered a large literature on hyperbolic and quasi-hyperbolic
ime preferences (e.g., Laibson (1997 ), for reviews; see Frederick, Loewenstein, and
’Donoghue (2002 ) and Ericson and Laibson (2019 )). As already mentioned in the
ntroduction, most closely related to our approach is the string of papers following
alevy (2008 ), which derives hyperbolic discounting from the same mechanism
hat we employ, namely, a combination of future uncertainty with subproportional
robability weighting. The subsequent contributions by Saito (2011 ) and Chakraborty,
alevy, and Saito (2020 ) are concerned with establishing a two-way relationship
etween subproportional probability weights and hyperbolic discounting. The final
aper in this series clarifies that subproportionality both implies and is implied by
yperbolic discounting in the domain of single temporal prospects in continuous time,
he objects of our model. For consumption streams in discrete time, Halevy (2008 )’s
riginal topic, subproportionality still implies hyperbolic discounting, but the reverse
irection requires more involved conditions, however. 

Intertemporal choice is the objective of Kőszegi and Szeidl (2013 )’s model of
ocusing. By explicitly taking into account attributes of the decision context, their
odel of attention is able to predict when people exhibit present or future bias.
ur approach is able to generate future bias as well, if the decision maker is
rone to a reverse common ratio effect (i.e., if the probability weighting function
s supraproportional). Gabaix and Laibson (2022 ) propose a yet different approach
o time discounting. They derive hyperbolic discounting from the assumption that
ecision makers obtain unbiased but noisy simulations of future utilities. Both the
ource and the nature of uncertainty differ between their approach and ours: In their
odel, uncertainty captures the fact that the decision maker does not know the actual
uture utility she will experience. Simulation noise makes future utility more risky
in terms of second-order stochastic dominance). In contrast, we model the fact that
something may go wrong,” which adds a downside risk to future prospects (in terms of
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rst-order stochastic dominance). Moreover, Gabaix and Laibson (2022 ) do not study
he interaction of risk and time preferences. 

Epper, Fehr-Duda, and Bruhin (2011 ) provide experimental evidence that common
atio violations and non-constant discounting are actually exhibited by the same
eople. Using the decline of discount rates as a measure of decreasing impatience,
pper, Fehr-Duda, and Bruhin (2011 ) show that participants’ departures from linear
robability weighting are indeed highly significantly correlated with the strength of
he decrease in discount rates. In fact, the only variable associated with decreasing
iscount rates turns out to be the degree of subproportionality of probability weights,
hich explains a large percentage of the variation in the extent of the decline,
hereas observable individual characteristics, such as gender, age, experience with
nvestment decisions, and cognitive abilities are not significantly correlated with the
egree of non-constant discounting. Thus, their paper provides the first evidence that
ubproportionality is indeed an important driver of discounting behavior. 

Observations #3 and #4 concern the process dependence of risk taking and time
iscounting behavior. In the domain of risk, the prevalent finding is that, on average,
ubjects do not reduce compound probabilities according to the rules of probability
alculus. For example, Aydogan, Bleichrodt, and Gao (2016 ) show that for their
articipants, the reduction principle is clearly violated at the aggregate level even
hough 60% of subjects behave in accordance with reduction. The aggregate result is
riven by a minority of participants who depart strongly from reduction—in this case in
he direction of a preference for sequential resolution. The authors attribute this finding
o the utility of gambling. However, there is also abundant experimental evidence that
he value of a compound lottery is smaller than the value of the equivalent single-stage
ottery, for example, Chung, von Winterfeldt, and Luce (1994 ), Budescu and Fischer
2001 ), Abdellaoui, Klibanoff, and Placido (2015 ), and Fan, Budescu, and Diecidue
2019 ) to name a few. It seems to be the case that the framing of the experimental tasks
lays a role whether one finds a preference or an aversion to compound risks (Nielsen
020 ). 

A related category of results concerns investment games (Gneezy and Potters 1997 ;
haler et al. 1997 ; Bellemare et al. 2005 ; Gneezy, Kapteyn, and Potters 2003 ; Haigh
nd List 2005 ). The general finding is that people tend to invest less conservatively, that
s, they take on more risk, when they are informed about the outcomes of their decisions
nly infrequently. This finding is often interpreted as a manifestation of myopic
oss aversion , a term coined by Benartzi and Thaler (1995 ). In this context, myopia
s defined as narrow framing of decision situations, which focuses on short-term
onsequences rather than on long-term ones. Loss aversion, one of the key constituents
f prospect theory, describes people’s tendency to be more sensitive to losses than to
ains. According to this interpretation, if people evaluate their portfolios frequently,
he probability of observing a loss is much greater than if they do so infrequently.17 
7. In these experiments, subjects evaluate sequences of identical two-outcome lotteries over several 
eriods where the range of potential outcomes increases with the number of periods. As we noted in 
ection 3.3 , subproportionality does not deliver clear predictions for this class of prospects. However, 
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hatever the specific experimental context, however, all these experiments share the
eature that time delays were negligible. Tests of process dependence in genuinely
emporal settings are still lacking. 

Process dependence of risk taking was theoretically analyzed in the seminal
ontributions of Segal who deals with the evaluation of two-stage prospects in the
omain of RDU (Segal 1987a , b , 1990 ). Dillenberger (2010 ) provides a necessary and
ufficient condition for preferences for one-shot resolution of uncertainty, which holds,
or example, in Gul (1991 )’s theory of disappointment aversion, but not generally in
DU. However, we show in Online Appendix E.2 that this preference condition also
pplies to the class of resolution processes studied here. 

With respect to Observation #4, process dependence has also been observed in the
omain of time discounting: Discount rates applied to a particular delay are higher
hen the delay is divided into subintervals than when it is left undivided (Read 2001 ;
ead and Roelofsma 2003 ; Ebert and Prelec 2007 ; Epper, Fehr-Duda, and Bruhin
009 ; Dohmen et al. 2017 ). This regularity of subadditive discounting has usually been
nterpreted as a manifestation of (pure) time preferences (Read 2001 ). 

Observation #5 refers to the effect of the timing of uncertainty resolution on
isk taking behavior. Several experimental studies investigated people’s intrinsic
references for resolution timing. The general finding is that there are varying
ercentages of people with preference for early resolution, preference for late
esolution and timing indifference (Nielsen 2020 ). Often, the percentage of people
ith a preference for late resolution is quite sizable (Chew and Ho 1994 ; Ahlbrecht and
eber 1996 ; Arai 1997 ; Lovallo and Kahneman 2000 ; Eliaz and Schotter 2007 ; von
audecker, van Soest, and Wengström 2011 ; Ganguly and Tasoff 2017 ).18 This finding
s actually quite surprising, at least for situations where real money is at stake. Knowing
arly how much income to expect should always be advantageous for adapting one’s
onsumption plans even though one might not be able to spend the money immediately.

An intrinsic preference for resolution timing cannot be accommodated by EUT but
s usually modeled by an additional preference parameter (Kreps and Porteus 1978 ;
hew and Epstein 1989 ; Grant, Kajii, and Polak 2000 ). What these models cannot
apture, however, is the probability dependence of timing preferences, as found by Arai
1997 ), for example. Epstein and Kopylov (2007 )’s and Epstein (2008 )’s axiomatic
apers analyze resolution timing as well. According to their approach, decision makers
ay become more pessimistic as payoff time approaches, either due to changes in
eliefs or anticipatory feelings (see also Caplin and Leahy (2001 )). 
anger and Weber (2005 ) show that the same is true for myopic loss aversion—for specific risk profiles, 
yopia will not decrease but increase the attractiveness of a sequence. Blavatskyy and Pogrebna (2010 ) 
lso contest the validity of the myopic loss aversion hypothesis. 

8. Epstein and Zin (1991 ) also find a preference for late resolution of uncertainty in market data on 
.S. consumption and asset returns. In line with our predictions, preference for late resolution seems to be 
articularly pronounced for positively skewed distributions, that is, for prospects with small probabilities 
f the best outcome, and increases with time delay—a prediction that is a distinguishing feature of our 
odel. 

 2024
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Observation #6 pertains to a number of experimental studies that report systematic
ffects of risk on discounting behavior: Discount rates for certain future payoffs tend
o be higher than discount rates for risky future payoffs (Stevenson 1992 ; Ahlbrecht
nd Weber 1997 ; Abdellaoui et al. 2018 ). Risk-dependent discounting is also evident in
iminishing immediacy: People’s preference for present certain outcomes over delayed
nes, immediacy, weakens drastically when the outcomes become risky—they behave
s if they discounted the risky reward less heavily than the original certain one (Keren
nd Roelofsma 1995 ; Weber and Chapman 2005 ; Baucells and Heukamp 2010 ). This
vidence motivated Halevy (2008 )’s conjecture that future uncertainty might be the
river of this phenomenon. 

Furthermore, the valuation of future prospects appears to be order-dependent,
bservation #7: It makes a difference whether a risky future payoff is first devalued
or risk and then for delay or in the opposite order (Öncüler and Onay 2009 ). When
ayoffs are discounted for risk first, they are assigned a less favorable value than in
he reverse case. Moreover, the delay-first value practically coincides with the value
eported when both dimensions are accounted for in one single operation. This finding
7 can be also interpreted as a manifestation of risk dependence of discounting. 

.2. Other Related Literature 

here is a large empirical and theoretical literature on the domain of risk taking and an
qually large one on time discounting, focusing on single aspects such as, for example,
yperbolic discounting, preferences for resolution timing, and the value of information.
here are, in comparison, relatively few papers dealing with an integrated view of risk
nd time. However, the subject has recently gained traction. As reviewing this literature
s beyond the scope of this paper, we focus on those contributions that are more closely
elated to our work. 

Motivated by the similarities of anomalies in risk taking and time discounting
ehaviors, Prelec and Loewenstein (1991 ) develop psychological properties of multi-
ttribute prospect valuation that may be common in both decision domains. Thus,
ommon ratio violations and decreasing impatience may be driven by the same
sychological principles. The authors do not address how features of risk preferences
nd time preferences interact with each other, however. 

Similarly, Quiggin and Horowitz (1995 ) analyze parallels between the theories
f choice under risk and choice over time and show the usefulness of RDU
or understanding the analogy between risk aversion and impatience. Leland and
chneider (2017 ) propose a different theory that can account for many anomalies
n risk taking and time discounting behavior. Their approach extends the concept of
alience from outcome differences to differences in probabilities and differences in
elays. This enables the authors to explain a large set of interesting facts in risk taking,
ime discounting, and consumer behavior. However, they explicitly mention on page 20
hat their theory “does not account for interaction effects between risk and time” that
re precisely the object of our paper. On the other hand, our paper does not explain facts
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uch as labeling effects, framing effects, or peanut effects, which are the explicanda of
eland and Schneider (2017 )’s paper. 
DeJarnette et al. (2020 ) study a setting that is complementary to ours: Their time

otteries have fixed prices, but random payment dates. In contrast, we explicitly abstract
rom uncertainty with regard to the timing of outcomes. However, extending our
pproach to their time-lottery setting may be an interesting direction of future research.

. Concluding Remarks 

e have demonstrated that our modeling approach organizes all seven phenomena
f experimental research and is also able to accommodate a wide range of outcomes
y plausible levels of survival probability. In our view, apart from explaining the
even regularities uncovered by experiments, the model helps to better understand
he patterns of heterogeneity in individual behaviors. Not everyone is prone to
ommon ratio violations. In fact, almost any kind of shape of probability weighting
an be found in individual estimates, and even among common ratio violators the
egree of subproportionality may vary greatly. So far, only a few contributions
ave already addressed the issue of heterogeneity (Epper, Fehr-Duda, and Bruhin
011 ; Islam, Diecidue, and Hardardottir 2022 ). Thus, our framework provides a
ost of predictions that can be investigated in future experimental research. For
xample, people with comparatively stronger subproportional probability weights
hould, ceteris paribus , exhibit a greater increase in risk tolerance for delayed prospects
han less subproportional decision makers do. Similarly, the former group should
how a greater preference for uncertainty to resolve in the future rather than in the
resent. Moreover, these effects are predicted to be more pronounced for positively
kewed prospects—a prediction that is specific to our model. Sequential resolution
f uncertainty is another area where more work needs to be done as evidence on
ubstantially delayed prospects is still missing. Ideally, the same subjects should be
xposed to the full program of experiments delineated in this paper to find out if and
hen our predictions materialize. 
Another interesting test of the model can be based on the model’s assumption that

urvival probability depends on time horizon according to st . For a given participant
ample at a given point in time, the preference parameters and the uncertainty
erception s should not vary across time horizons. Thus, if a given participant sample
aces future prospects of different delays, we should not observe a change in the
stimated value of s (nor a change in estimated preference parameters) because such
 change would challenge the assumption that survival probability can be represented
y st . 

The ultimate test of our model, however, is to exogenously manipulate the
ubjective probability that something may go wrong, s, the second crucial component
f our approach aside from subproportionality. As effect sizes also depend on the
erceived uncertainty of the future, such a manipulation can shed light on the
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uestion whether our model has actually identified an important causal driver of
ehavior. 

Aside from conducting new experiments, the usefulness of our approach should be
ested in the field as well. Both financial and insurance markets are fruitful areas for
uch an endeavor. Barberis (2013 ) concludes his review of 30 years of prospect theory
n the following way: “Probability weighting, [...] has drawn increasing interest in
ecent years. Indeed, within the risk-related areas of finance, insurance, and gambling,
robability weighting plays a more central role than loss aversion and has attracted
ignificantly more empirical support” (p. 191). Thus, our survival-risk augmented
ersion of probability weighting could be put to the test in these fields as well.
uzzles like the maturity dependence of risk premia may appear in a new light.
nother fertile application may be option prices: Polkovnichenko and Zhao (2013 )
how the usefulness of probability weighting for explaining option prices, which
ould be enhanced by incorporating the maturity dimension as well.19 Insurance
arkets are another domain where our approach may reconcile conflicting findings:
ecognizing that risk preferences are delay-dependent may help understand why
eople are willing to pay outrageous premiums for certain insurance contracts, such as
xtended warranties, and totally unwilling to take out insurance at all, such as in the
ealth domain. 

We do not claim that subproportionality plus future uncertainty are the only
mportant drivers in the domain of risk- and time-dependent decision making. Other
actors such as concave utility, intrinsically hyperbolic pure time preferences, or
eference dependence are also likely to play a role. However, there is accumulating
vidence that risk and time preferences are intertwined and interact in systematic
ays, and we are just beginning to understand the factors underlying these phenomena.
e have shown that subproportionality plus subjectively perceived future uncertainty
rovides a unifying explanation for a set of key findings—suggesting that these factors
hould be taken seriously in future research. 
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