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Abstract

Almost all important decisions in people’s lives entail risky consequences. Some of these deci-
sions involve events that materialize with a low probability but lead to extreme consequences
such as loss of total wealth or accidental death. When facing such rare extreme events, peo-
ple display considerable risk aversion in some situations whereas in others the opposite is
the case. For example, the prospect of airplane and stock market crashes triggers high risk
aversion but there is a low willingness to take out hazard or life insurance. We address this
puzzle by arguing that the timing of the consequences and of uncertainty resolution are cru-
cial for understanding these phenomena. We show that future uncertainty conjointly with
people’s proneness to probability distortions generates a unifying framework for explaining
the coexistence of over- and underweighting of rare extreme events and, consequently, the
underinsurance puzzle.
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1 Introduction

Underinsurance is a prevalent phenomenon. For example, inhabitants of disaster-prone areas
are often not willing to take insurance even if it is highly subsidized (Kunreuther, 1984; Viscusi,
2010). Globally, between 1960 and 2011 nearly 60% of major natural catastrophes worldwide
were uninsured (von Peter, von Dahlen, and Saxena, 2012). Even in high-income countries, only
50% of the damage resulting from catastrophes, such as earthquakes, tsunamis and floods, were
covered by insurance contracts. von Peter, von Dahlen, and Saxena (2012) argue that uninsured
losses stemming from major natural catastrophes have large and significant negative effects on
economic activity, both on impact and over the longer run. Similarly, many consumers are re-
luctant to buy adequate life insurance, thereby exposing their loved ones to considerable poverty
risk (Bernheim, Forni, Gokhale, and Kotlikoff, 2003; Cutler, Finkelstein, and McGarry, 2008). This
lack of adequate insurance coverage is puzzling because people seem to be extremely risk averse
in other domains of economic decisions. Consumers purchase extended warranties for house-
hold appliances, and even for telephone wires, at exorbitant prices, i.e. they display extreme risk
aversion in situations that involve comparatively low stakes (Cicchetti and Dubin, 1994; Huysen-
truyt and Read, 2010). According to the standard workhorse of economics, Expected Utility (EU)
theory, consumers should be approximately risk neutral in this case (Loomes and Segal, 1994).

In this paper we argue that these disparities can be understood in terms of how tail events,
i.e. rare extreme events, are evaluated. For example, paying a multiple of expected losses for
extended warranties is consistent with the overweighting of an improbable appliance breakdown.
Behavior seems to be governed by overweighting of rare extreme events. Underinsurance, as
apparent in life and disaster insurance choices, however, is consistent with underweighting of
rare extreme events, which raises the question how these opposite tendencies can be rationalized.
As Barberis (2013a) recently noted, such an explanation is still missing.

We will show that this puzzle can be solved by accounting for two crucial characteristics of
risky decision making, namely the passage of time until outcomes materialize and the process
by which uncertainty resolves. Our work is inspired by mounting experimental evidence docu-
menting that time is not an independent dimension of risky future prospects but rather interacts
with risk in complex ways. In particular, there are two striking regularities. First, risk tolerance
depends on the length of delay until outcomes materialize: It is higher for delayed outcomes than
for immediate outcomes (Jones and Johnson, 1973; Shelley, 1994; Ahlbrecht and Weber, 1997;
Sagristano, Trope, and Liberman, 2002; Noussair and Wu, 2006; Coble and Lusk, 2010; Abdel-
laoui, Diecidue, and Öncüler, 2011). Second, risk tolerance depends on the process of uncertainty
resolution: People tend to invest less conservatively, i.e. they take on more risk, when they are
informed about the outcomes of their decisions only infrequently (Gneezy and Potters, 1997;
Thaler, Tversky, Kahneman, and Schwartz, 1997; Gneezy, Kapteyn, and Potters, 2003; Bellemare,
Krause, Kröger, and Zhang, 2005; Haigh and List, 2005). Hence, observing uncertainty resolve
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gradually over the course of time seems to make decision makers less risk tolerant. In which
way do these experimentally discovered phenomena relate to the real-world decisions discussed
above?

Delay dependence speaks directly to insurance decisions. Compare, for example, two differ-
ent life insurance products, a regular life insurance policy (either a term policy or a permanent
one), and a flight insurance policy that covers the same event but expires immediately after
the flight. Concerning regular life insurance policies, there is little doubt about the fact that a
substantial percentage of the U.S. population is underinsured (Bernheim, Forni, Gokhale, and
Kotlikoff, 2003; Cutler, Finkelstein, and McGarry, 2008). However, flight insurance policies used
to be extremely popular in the 1950’s and 60’s when they were sold at vending machines at U.S.
airports.1 Many passengers were willing to pay outrageous premiums, obviously overweighting
the rare event of an imminent airplane crash (Meade, 1957).2 The important difference between
these two products is their maturity: A flight insurance policy is extremely short-term with
uncertainty resolving within hours, whereas a regular policy extends over a much longer time
horizon with uncertainty resolving at some unknown time in the (hopefully) remote future. The
latter characteristic also applies to disaster insurance.

Delay dependence seems to be important in asset markets as well. Recently, the term structure
of market risk premia has attracted considerable attention when assets with short maturities were
found to earn much higher risk premia than assets with long maturities (van Binsbergen, Brandt,
and Koijen, 2012; Andries, Eisenbach, and Schmalz, 2015; Eisenbach and Schmalz, 2016). Delay
dependence of risk tolerance implies that rare adverse events that tend to be overweighted when
perceived to materialize soon may end up being underweighted when expected to materialize in
the remote future.

However, this reasoning begs the question why investors shy away from equities. Isn’t the
risk of a stock market crash a rare extreme event comparable with a natural disaster? And should
we not expect high risk tolerance then? In our view, there is a crucial difference between these
two types of events with respect to the process by which uncertainty resolves. Take, for example,
natural disasters such as earthquakes and tsunamis. Rarely can their timing be predicted long
before their actual occurrence. They literally appear out of the blue. In these cases, uncertainty
resolves in one shot at some unknown time in the future. The opposite type of process is at
work in the stock market. Information on asset prices is readily available, for many assets even
in real time. Therefore, notwithstanding the longterm nature of many investments, uncertainty
is perceived to resolve gradually over the course of time rather than in one shot at some time in
the future. One can watch price bubbles building up, but not tectonic plates shifting. Process de-
pendence implies that, even for long time horizons, rare adverse events tend to be overweighted

1This type of insurance seems to have been popular in other places as well. In 1997 Japanese regulatory agencies
granted AIG the right to sell travel insurance via vending machines at Japanese airports, see Fingleton (2008), p. 421.

2Taken from Footnote 1 in “Air Trip Insurance”, Washington and Lee Law Review 20, Issue 2, Article 16.
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when the resolution of uncertainty is observable. Our task, therefore, is to provide a unified
account for the delay and process dependence of risk tolerance.

As the valuation of tail events is the central theme of this paper, a natural starting point is
rank-dependent probability weighting. Rank-dependent models, such as Rank Dependent Utility
Theory (RDU; Quiggin (1982)) and Cumulative Prospect Theory (CPT; Tversky and Kahneman
(1992)) involve a probability weighting function that, empirically, overweights a prospect’s most
favorable outcome when it materializes with a small probability, but underweights it when it ma-
terializes with a large probability (for a recent review see Fehr-Duda and Epper (2012)). Such a
regressive probability weighting function results in decision weights that overweight both tails of
the outcome distribution and underweight intermediate outcomes (Wakker (2010), Chapter 6.4).
Hence, it can explain why people simultaneously engage in gambling and insuring, why they
favor positively skewed distributions and dislike negatively skewed ones.3 Moreover, regres-
siveness accommodates the Allais common-consequence effect (Wu and Gonzalez, 1998). This
common pattern of overweighting of both tails has an intuitive interpretation of salience: The de-
cision makers’ attention is drawn primarily to the extreme possible outcomes, termed by Lopes
(1987) “the psychology of hope and fear”.

However, underweighting of adverse tail events, which seems to govern disaster and life in-
surance choices, seems to contradict such a decision-weight based explanation.4 In their original
paper on Prospect Theory, Kahneman and Tversky (1979) surmise that highly unlikely events are
either overweighted or simply ignored because people are limited in their ability to comprehend
and evaluate extreme probabilities.5 Of course, one could also argue that rare extreme events are
underweighted because people are not aware of their existence. But many insufficiently insured
people live in disaster-prone areas, even in so-called red zones (Barnes, 2011). Recently, for exam-
ple, an earthquake in Amatrice, located in a notoriously earthquake-prone area of central Italy,
caused 300 deaths and made many more homeless.6 In 2009, a similar disaster occurred in the
same region only 50 km away from Amatrice. Thus, unawareness of the possibility of another
earthquake in that region is a highly unlikely explanation.

Hence, underweighting of rare adverse events has to be located elsewhere: As Abdellaoui,

3Skewness preferences play an important role in finance, e.g. in rationalizing the cross-section of asset prices, the
underdiversification of households, and account for other phenomena such as betting on long shots (Barberis and
Huang, 2008; Snowberg and Wolfers, 2011; De Giorgi and Legg, 2012; Polkovnichenko and Zhao, 2013).

4The same argument applies to Friedman and Savage (1948) who proposed a utility function that accommodates the
simultaneous occurrence of gambling and insuring, i.e. addressing rare positive and rare negative events. At a given
wealth level, this utility function is convex with respect to wealth increases, which may lead to gambling behavior,
but concave with respect to wealth decreases and, thus, predicts insurance purchases. By that same token, the model
predicts risk aversion regarding all types of rare negative events and, therefore, cannot explain underinsurance. For
a critique of their approach see also Markowitz (1952).

5Kahneman and Tversky (1979) go on to argue that, consequently, the probability weighting function is not well-
behaved near the end-points. This argument does not appear in the cumulative version of Prospect Theory in
Tversky and Kahneman (1992) anymore.

6In fact, the earth has hardly stopped trembling since then.
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Diecidue, and Öncüler (2011) have recently shown experimentally, the delay dependence of
risk tolerance is predominantly due to a shift of the probability weighing function. Probabil-
ity weights for future events tend to become more optimistic with increasing time delay, which
implies that decision weights for tail events react in a predictable direction: Overweighting of
rare adverse events, occurring in decisions with short time delays, becomes progressively less
pronounced as the time horizon shifts out into the future. Thus, events perceived to occur in the
distant future may even end up being underweighted.

Aside from regressiveness, which drives the weighting of tail events, probability weights ex-
hibit another important characteristic: subproportionality.7 This feature maps the famous Allais
common-ratio paradox (Allais, 1953) and induces a strong decline in risk tolerance in the case
of gradual resolution of uncertainty when decision weights are compounded sequentially over
short time horizons (Segal, 1987a,b, 1990). This finding is reminiscent of myopic loss aversion (Be-
nartzi and Thaler, 1995; Barberis, Huang, and Thaler, 2006), which makes people pronouncedly
risk averse for short time horizons. Contrary to myopic loss aversion, myopic probability weighting
is a phenomenon that emerges independently of the location of the reference point. The crucial
question that remains is what mechanism drives the delay dependence of probability weights.

We will present a theoretical framework in which the delay dependence of probability weights
is generated by the uncertainty inherent in the future. In particular, something unrelated to
the prospect under consideration may go wrong before outcomes materialize which reduces the
chances of actually obtaining the expected outcomes. Imagine, for example, that you are planning
a vacation on the Maldives. On the day you are supposed to fly to the Maldives you find out
that your passport has expired. Therefore, you will lose several days of recreation and have
to incur costs for rescheduling your flight. This “something-went-wrong” event generates an
outcome that is worse than the minimum level of utility you had expected from vacationing on
the Maldives. Aside from forgetting to renew your passport, all kinds of adverse contingencies
may arise after you have booked your vacation. For example, a serious illness in your family
may occur. Therefore, it is plausible to assume that the probability of something going wrong is
perceived to increase with the length of delay until outcomes materialize.

If people integrate this type of future uncertainty into their valuations of future prospects, the
passage of time drives a wedge between risk tolerance with respect to immediate risks versus de-
layed risks. Obviously, the way in which future uncertainty affects risk tolerance depends on the
characteristics of people’s risk preferences, in particular on the features of probability weighting.
In the following, we show that regressiveness and subproportionality affect the decision weights
of future outcomes in the desired direction. Whereas regressiveness governs the weighting of tail
events, the ultimate driver of both delay dependence and process dependence is a single feature
of probability weighting, subproportionality, i.e. people’s proneness to common-ratio violations.

7Precise definitions can be found in Section 2.
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We show, first, that in the presence of inherent uncertainty, probability weights become more op-
timistic with increasing delay. Thereby, unfavorable tail events receive progressively less weight
and may end up being underweighted altogether. The driver of this effect is that unfavorable
tail events lose their salience when all kinds of things may go wrong. Second, gradual resolu-
tion of uncertainty counteracts this effect, theoretically a result of compounding subproportional
decision weights. Intuitively, being able to observe uncertainty resolve exposes decision makers
frequently to potentially disappointing events.

If underinsurance is driven by delay-dependent risk tolerance caused by the inherent un-
certainty of the future, there is probably not much policy can do about changing preferences -
that something may go wrong is a fact of life. Increasing the frequency of feedback may reduce
excessive risk tolerance but may not be feasible. A similar situation arises for climate change
mitigation. The upshot of these insights is that mandatory insurance and environmental taxes
may be the only effective instruments to counter delay-dependent risk tolerance.8

To the best of our knowledge, we are the first to present a behavioral explanation of the
coexistence of overweighting and underweighting of rare extreme events. Thus, we provide a
rationale both for the observed variations in real-world risk tolerance and the underinsurance
puzzle. We do not present a novel technically sophisticated solution but work with well-known
concepts for which there is ample empirical support. While previous work has often focused
on specific aspects of risk taking and time discounting we are not aware of any other approach
that covers such a richness of phenomena besides delay- and process-dependent risk tolerance:
First of all, as discussed extensively in Epper and Fehr-Duda (2015b), our model delivers a uni-
fying perspective on seemingly unrelated findings discovered by experimental research, such
as the preference for late resolution of uncertainty, hyperbolic and subadditive discounting, the
differential discounting of certain and risky prospects, and the order-dependence of prospect val-
uation.9 Furthermore, it accommodates all the classical problems facing expected utility theory:
the co-existence of gambling and insuring10, and the Allais paradoxes, the common-ratio and the
common-consequence effects. Furthermore, the model is tractable for applied work (for a recent
example see Barseghyan, Molinari, O’Donoghue, and Teitelbaum (2013).)

Reviewing the entire literature related to our topic is beyond the scope of this paper, but we
will briefly discuss some prominent representative contributions. We are not the first to acknowl-
edge that “[a]nything that is delayed is almost by definition uncertain” (Prelec and Loewenstein (1991),
p.784). A large body of previous research has focused on the implications of future uncertainty

8For example, many Swiss cantons have mandatory insurance schemes that cover natural disasters.
9Here we focus solely on risk tolerance and tail risks, the latter requiring a generalization of our insights to multi-
outcome prospects.

10Wakker (2010) writes on page 206: “It is worthy to note that the coexistence of gambling and insurance, a classical paradox
in the economic literature, can be explained by RDU. Even more than that, the same basic property underlies both gambling
and insurance: the overweighting of extreme-outcome probabilities, being the small probability of winning a big prize under
gambling (possibility effect) and the small probability of a catastrophe under insurance (certainty effect).”
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for discounting behavior (Sozou, 1998; Dasgupta and Maskin, 2005; Bommier, 2006; Pennesi,
2015). Related to our approach, Halevy (2008), Walther (2010) and Saito (2015) deal with the
impact of probability weighting on hyperbolic discounting. Risk preferences have mostly been
studied in the context of purely atemporal settings. For example, Quiggin (2003) investigates the
consequences of background risk for generalized expected utility models. Recently, interactions
of time and risk were discussed by Baucells and Heukamp (2012). They present an axiomatic
approach for the domain of simple prospects with only one non-zero outcome, which cannot
address the question of the valuation of tail events. A related approach concerns timing risk, i.e.
the uncertainty about the exact time at which payoffs will materialize (DeJarnette, Dillenberger,
Gottlieb, and Ortoleva, 2015).

Regarding the sequential resolution of uncertainty, Segal examines the relationship between
subproportionality and two-stage lotteries (Segal, 1987a,b, 1990). Dillenberger (2010) analyzes
necessary and sufficient conditions for preferences to favor one-shot resolution of uncertainty,
which are in general not compatible with rank-dependent models. As it turns out, however, the
preferences over the specific future prospects studied in this paper do meet his conditions. Hence,
in our model, preferences for resolution timing are an inherent feature of the risk preferences
themselves, contrary to the literature based on Kreps and Porteus (1978)’s seminal work in which
preferences for resolution timing are modeled with a separate parameter. Resolution timing
is also an important ingredient of Epstein and Kopylov (2007) and Epstein (2008)’ axiomatic
papers: decision makers may become more pessimistic as payoff time approaches, either due to
changes in beliefs or anticipatory feelings (see also Kőszegi and Rabin (2009) and Caplin and
Leahy (2001) for related work). Our model identifies a mechanism of changing anticipatory
feelings: Anticipatory feelings may be the driver of probability weighting (Walther, 2003) and,
thus, increasing risk tolerance can be interpreted as manifestation of increasing optimism.

The remainder of the paper is organized as follows: The key assumptions of our model and
their implications for general multi-outcome prospects are discussed in Sections 2 and 3. Model
predictions are presented in Section 4. Finally, Section 5 concludes. Supplementary materials are
available in the appendix where we also show that our results developed for decision under risk
are portable to situations in which decision makers do not or cannot know the exact probabilities.

2 Key Assumptions

Our model builds on the basic idea that there is risk attached to any future prospect. The risk
inherent in the future, survival risk for short, may stem from different sources. At the personal
level, it refers to a general feeling of “something may go wrong” due to unexpected contingencies,
such as a check getting lost in the mail or involvement in an accident. Another important channel
through which survival risk may manifest itself is the institutional environment. Environments
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where property rights are only weakly protected or institutions of contract enforcement are not
reliable, as is the case in many developing countries, are characterized by high survival risk.
This risk turns allegedly guaranteed payoffs into risky ones and introduces an additional layer of
risk over and above the objective atemporal probability distributions of risky payoffs (henceforth
referred to as base risk). Consequently, there are two distinct types of risk, time-independent base
risk and time-dependent survival risk. We model the probability of prospect survival by a constant
per-period rate s. Thus, the probability that something may go wrong until payoffs materialize
at time t amounts to 1− st.

Since our main concern is the weighting of tail events, we make use of the characteristics of
rank-dependent models.11 The starting point of our approach is Rank Dependent Utility Theory
(RDU).1213 We assume that a decision maker’s atemporal risk preferences over prospects that
are played out and paid out with negligible time delay can be represented by a rank-dependent
functional. Consider a prospect P = (x1, p1; ...; xm, pm) over (terminal) monetary outcomes x1 >

x2 > ... > xm ≥ 0 with Σpi = 1. The function u maps the utility of monetary amounts x, and w
denotes the subjective probability weight attached to p1, the probability of the best outcome x1.
As usual, both u and w are assumed to be monotonically increasing, w to be twice differentiable
and to satisfy w(0) = 0 and w(1) = 1. Decision weights πi are defined as14

πi =


w(p1) for i = 1

w
(

∑i
k=1 pk

)
− w

(
∑i−1

k=1 pk

)
for 1 < i < m

1− w(1− pm) for i = m

(1)

Thus, the decision weight of xi is the probability weight attached to the probability of obtain-
ing something at least as good as xi minus the probability weight attached to the probability of

11For an insightful discussion on the intuition of rank-dependent models see Diecidue and Wakker (2001).
12RDU is a generalization of expected utility theory and, thus, tacitly also assumes asset integration. While reference

dependence, modeled e.g. by Cumulative Prospect Theory (CPT), may be an important additional feature of risk tak-
ing behavior, it does not play a role in explaining over- and underweighting of rare extreme events. RDU has several
attractive features. First, RDU respects completeness, transitivity, continuity, and first-order stochastic dominance.
Moreover, RDU displays first-order attitudes toward risk, i.e. preferences between prospects the consequences of
which are sufficiently close to one another do not necessarily tend to risk neutrality. In this sense, experimental
evidence favors rank-dependent utility theory over many other non-expected utility approaches that only permit
second-order risk aversion (Sugden, 2004). RDU is also able to accommodate correlation aversion/intertemporal
risk aversion (Epper and Fehr-Duda (2015a), Appendix A4).

13It is noteworthy that there is a behavioral equivalence between Botond Kőszegi and Matthew Rabin’s reference-
dependent model (Kőszegi and Rabin, 2007) and a specific form of RDU. Masatlioglu and Raymond (2016) establish
identity between the Kőszegi-Rabin model (in case of a choice-acclimating personal equilibrium) and RDU with a
second-order polynomial probability weighting function (see also Appendix C). More specifically, in the Kőszegi-
Rabin model, it is the loss aversion parameter that governs probability distortion. For our analysis, it is important
to understand that the Kőszegi-Rabin model does not feature the two key properties of our model (see Section
2): The probability weights imputed by it are neither subproportional, nor are they regressive. Consequently, the
Kőszegi-Rabin model does not predict the Allais common ratio effect and the common consequence effect (i.e. the
simultaneous overweighting of both tails of distributions).

14Alternatively, decision weights πi can be expressed in terms of the cumulative distribution function F of the out-
comes xi: πi = w(1− F(xi+1))− w(1− F(xi)) for 1 ≤ i ≤ m, where F(xm+1) := 0.
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obtaining something strictly better than xi. Finally, the prospect’s value is represented by

V(P) =
m

∑
i

u(xi)πi . (2)

On average, empirical probability weighting curves are regressive, overweighting small prob-
abilities and underweighting large probabilities (Bruhin, Fehr-Duda, and Epper, 2010), which is
also a common pattern in individual data (Gonzalez and Wu, 1999).15 Common specifications
of functional forms for w typically show a combination of concavity over small probabilities and
convexity over large probabilities, i.e. an inverse S-shape, which is an additional feature not
required for our analysis. A probability weighting function w(p) is regressive if there exists a
probability p∗ ∈ (0, 1), such that

w(p) > p for p < p∗

w(p) = p∗ for p = p∗

w(p) < p for p > p∗
. (3)

In the context of rank-dependent models, regressiveness of the probability weighting function
generates overweighting of a prospect’s tail outcomes and underweighting of its intermediate
outcomes, which nicely captures the notion that more extreme outcomes within a given prospect
are more salient (see Figure 1 in Section 4.1).

To see why a regressive probability weighting function generates overweighting of the tails,
consider Equations 1 and 3. Suppose that both the best and the worst outcomes, x1 and xm,
materialize with small probabilities (i.e. m > 2). The decision weight of the right tail, π1, equals
w(p1). As p1 is small, x1 is overweighted by w. The decision weight of the left tail, πm, equals
1− w(1− pm). As pm is small, 1− pm is large and, hence, underweighted by w. Consequently,
xm is overweighted as well.

Another pervasive feature of risk preferences concerns proneness to Allais-type common-ratio
violations that constitute one of the most widely replicated experimental regularities in human
and animal behavior: Mixing a pair of prospects with common aversive outcomes frequently
leads to preference reversals (Allais, 1953; Hagen, 1972; Kahneman and Tversky, 1979; MacCrim-
mon and Larsson, 1979; Battalio, Kagel, and MacDonald, 1985; Loomes and Sugden, 1987; Kagel,
MacDonald, and Battalio, 1990; Nebout and Dubois, 2014; Chark, Chew, and Zhong, 2016).

Inspired by one of Allais (1953)’s famous examples, Kahneman and Tversky (1979) presented
subjects with the decision situation summarized in Table 1. In the first decision situation, involv-
ing a certain option and a risky one, most people chose the certain option of 3000 dollars. When
confronted with the choice between a 25%-chance of receiving 3000 dollars and a 20%-chance of

15Aside from regressive shapes, convex weighting curves which globally underweight probabilities comprise another
common category of individuals’ probability weighting functions (see e.g. van de Kuilen and Wakker (2011)).
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Table 1: Allais-Type Common Ratio Pairs

First pair of options:
$3000 for sure � $4000 with a probability of 80%

Second pair of options:
$3000 with a probability of 25% ≺ $4000 with a probability of 20%

receiving 4000 dollars, the majority opted for the 4000-dollar alternative, however. Multiplying
the probabilities of 100% and 80% by a common factor λ ∈ (0, 1), in this example by λ = 1/4,
induced many people to reverse their preferences, a regularity termed common ratio effect.

Common-ratio violations are parsimoniously characterized by subproportionality of the prob-
ability weighting function w. Formally, subproportionality of w holds for probabilities p and q,
if 1 ≥ p > q > 0, and 0 < λ < 1 imply the inequality

w(p)
w(q)

>
w(λp)
w(λq)

(4)

(Prelec, 1998). Kahneman and Tversky (1979) note that this property imposes considerable con-
straints on the shape of w: it holds if and only if log w is a convex function of log p,16 in other
words the elasticity of w, εw(p) = d log w

d log p , is increasing in p (Segal, 1987a).
Intuitively, subproportionality decreases the decision maker’s sensitivity to disappointment

for scaled-down probabilities, i.e. outcomes with high ex-ante probabilities of materializing carry
higher disappointment potential. In this sense, the loss of certainty hurts more than the scaling
down of a probability bounded away from one does. Therefore, subproportionality implies the
certainty effect, which constitutes the special case of p = 1: w(λq) > w(λ)w(q) is satisfied for
any λ, q such that 0 < λ, q < 1. Many functional specifications proposed in the literature ex-
hibit subproportionality over some probability range under appropriate parameter restrictions
(see Appendix C). For example, the famous specification used by Tversky and Kahneman (1992)
exhibits a U-shaped elasticity. Similarly, probability distortions generated in specific choice con-
stellations by Bordalo, Gennaioli, and Shleifer (2012)’s salience framework are superproportional
for small probabilities and subproportional for large probabilities as well. In our model, subpro-
portionality over the range of small probabilities is crucial for risk tolerance extending to long
time horizons, however. Perhaps the most prominent representative of a globally subproportional
function with a regressive shape is Prelec (1998)’s flexible two-parameter specification. Through-
out the paper, we will use this functional specification to illustrate our results graphically.

16Denoting this function ω = log w, Prelec defines the degree of subproportionality as the Arrow-Pratt index of
relative convexity of ω.
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3 The Model

Our approach is applicable to an arbitrary number of outcomes provided that survival risk does
not change the rank order of the prospects, i.e. “something may go wrong” is encoded as an
outcome x no better than the prospects’ minimum outcome xm ≥ x.17 Rearranging terms in
Equation 2 yields

V(P) = u(x1)w(p1) + u(x2)
(

w(p1 + p2)− w(p1)
)
+ ... + u(xm)

(
1− w(1− pm)

)
=
(

u(x1)− u(x2)
)

w(p1) + ... +
(

u(xm−1)− u(xm)
)

w(1− pm) + u(xm) .
(5)

This presentation of V clarifies that xm is effectively a sure thing whereas obtaining something
better than xm is risky.

If the prospect is not played out and paid out in the present, but at some future time t > 0, two
additional factors become important. First, we follow the standard approach and model people’s
willingness to postpone gratification by a constant rate of time preference η ≥ 0, yielding a
discount weight of ρ(t) = exp(−ηt). This assumption is not crucial for our results - neither a
zero rate of time preference, i.e. ρ = 1, nor genuinely hyperbolic time preferences affect our
conclusions. A prospect to be played out and paid out at t > 0 is discounted for time in the
standard way:

[V(P)]0 = V(P)ρ(t) . (6)

Second, and most importantly, survival risk changes the nature of the prospect. Let 0 < s ≤ 1
denote the constant per-period probability of prospect survival, i.e. the probability that the
decision maker will actually obtain the promised outcomes by the end of the period.18 Then
the probability that the allegedly guaranteed payment xm materializes at the end of period t is
perceived to be st, and the probabilities of obtaining something better than xm are scaled down
by st. Therefore, the objective m-outcome prospect is subjectively perceived as an (m+1)-outcome
prospect P̃ =

(
x1, p1st; x2, p2st; ...; xm, pmst; x, 1− st

)
, where x captures that “something may go

wrong”. With the passage of time, the probability of prospect survival gets progressively scaled
down.
17It is possible to obtain interesting predictions for the case in which the rank order of outcomes is altered by survival

risk. Such an analysis is not the focus of the present paper.
18For similar approaches see Halevy (2008), Walther (2010) and Saito (2015) who study hyperbolic discounting in the

context of probability-weighting models.
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Setting u(x) = 0, the subjective present value of the prospect amounts to

[V(P̃)]0 =

((
u(x1)− u(x2)

)
w(p1st) + ...

... +
(

u(xm−1)− u(xm)
)

w
(
(1− pm)st

)
+ u(xm)w(st)

)
ρ(t)

=

((
u(x1)− u(x2)

)
w(p1st)

w(st)
+ ...

... +
(

u(xm−1)− u(xm)
)w
(
(1−pm)st

)
w(st)

+ u(xm)

)
w(st)ρ(t) .

(7)

Now suppose that the observer assumes that there is no survival risk, i.e. that s = 1, while in
fact s < 1. Consequently, she infers probability weights w̃ and discount weights ρ̃ from observed
behavior on the presumption that the decision maker evaluates the objectively given prospect P.
However, in the eye of the decision maker the prospect involves an additional layer of risk. If the
observer neglects s < 1, she infers preference parameters from:

[V(P̃)]0 =

((
u(x1)− u(x2)

)
w̃(p1) + ... +

(
u(xm−1)− u(xm)

)
w̃(1− pm) + u(xm)

)
ρ̃(t) , (8)

interpreting w̃ as true probability weights and ρ̃ as true discount weights, while in fact the
weights are distorted by survival risk. Obviously, the measured weights differ from the under-
lying ones if s < 1. By comparing Equation 7 with Equation 8 we can see that the relationship
between underlying and observed risk preference parameters is given by

w̃(p) = w̃(p, t) =
w(pst)

w(st)
, (9)

as ρ̃(t) = w(st)ρ(t) is interpreted as the discount weight attached to the allegedly certain
outcome xm.19 Equation 9 defines the central relationship between observed and underlying
probability weights. Because w̃(p, t) 6= w(p) for subproportional preferences, survival risk drives
a wedge between atemporal risk preferences and risk taking behavior with respect to delayed
prospects.

4 Model Predictions

In the following, we present our model predictions rationalizing the over- and underweighting of
tail events and the underinsurance puzzle. As discussed above, both the timing and the process

19Time discounting of a certain outcome constitutes the special case of p = 1. Concerning the discount weights ρ̃(t),
an equivalent representation was derived by Halevy (2008) for Yaari (1987)’s dual theory with a convex probability
weighting function. If w̃ is subproportional, ρ̃ declines hyperbolically (see also Epper, Fehr-Duda, and Bruhin
(2011)).
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of uncertainty resolution are crucial features of prospect valuation. We distinguish two cases:
First, the prospect is played out and paid out at some time in the future. This situation of one-
shot resolution of uncertainty is represented by Proposition 1. Propositions 2 and 3 cover the
case when uncertainty is resolved sequentially over the course of time.

4.1 One-Shot Resolution of Uncertainty

Turning to the one-shot resolution of base risk and survival risk, we see from Equation 9 that
observed probability weights w̃(p, t) deviate from the underlying atemporal ones w(p, 0) = w(p)
in two respects: First, w(st) < 1 in the denominator boosts observed weights. Second, w(pst) in
the numerator distorts observed probability weights. In the following, we suppress delay t > 0
in the notation whenever there is no ambiguity about the length of delay. The assumption of
subproportional probability weights w generates clear predictions for w̃:

PROPOSITION 1:
Given subproportionality of w, t > 0 and s < 1:

1. The function w̃ is a proper probability weighting function, i.e. monotonically increasing in
p with w̃(0) = 0, w̃(1) = 1.

2. w̃ is subproportional.

3. w̃ is more elevated than w: w̃(p) > w(p). Elevation increases with

• time delay t,
• survival risk 1− s, and
• degree of subproportionality.

4. w̃ is less elastic than w.

5. The decision weight of the (objectively) worst possible outcome, xm, decreases with delay t.

Proof of Proposition 1.

1. Since w̃(0) = w(0)
w(st)

= 0, w̃(1) = w(st)
w(st)

= 1, and w̃′ = w′(pst)st

w(st)
> 0 hold, w̃ is a proper

probability weighting function.

2. Subproportionality of w̃ follows directly from subproportionality of w as for p > q and
0 < λ < 1:

w̃(λp)
w̃(λq)

=
w(λst p)
w(λstq)

<
w(st p)
w(stq)

=
w̃(p)
w̃(q)

. (10)

3. • Since w is subproportional,

w̃(p) =
w(pst)

w(st)
>

w(p)
w(1)

= w(p) (11)

holds for s < 1 and t > 0. Therefore, w̃ is more elevated than w.
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• Obviously, elevation gets progressively higher with increasing t and an equivalent
effect is produced by decreasing s. Since w̃ increases monotonically in t and w̃ ≤ 1 for
any t, elevation increases at a decreasing rate.

• In order to show that a comparatively more subproportional probability weighting
function entails a greater increase in observed risk tolerance we examine the relation-
ship between the underlying atemporal probability weights w and observed ones w̃.
Let w1 and w2 denote two probability weighting functions, with w2 exhibiting greater
subproportionality.
If w1(λ)w1(p) = w1(λpq) holds for a probability q < 1, then w2(λ)w2(p) < w2(λpq)
follows as w2 is more subproportional than w1 (Prelec, 1998). Choose r < 1 such that
w2(λ)w2(p) = w2(λpqr). For λ = st, the following relationships hold:

w̃1(p)
w1(p)

=
w1(λp)

w1(λ)w1(p)
=

w1(λp)
w1(λpq)

. (12)

Applying the same logic to w2 yields

w̃2(p)
w2(p)

=
w2(λp)

w2(λ)w2(p)
=

w2(λp)
w2(λpqr)

>
w2(λp)
w2(λpq)

. (13)

Therefore, the relative wedge w̃2(p)
w2(p) caused by subproportionality is larger than the

corresponding one for w1.

4. For the elasticity of w̃, εw̃(p), the following relationship holds:

εw̃(p) =
w̃′(p)p
w̃(p)

=
w′(pst)pst

w(pst)
= εw(pst) < εw(p) , (14)

as the elasticity εw increases in its argument iff w is subproportional.

5. As w̃(p) > w(p) holds for any 0 < p < 1, π̃m = 1− w̃(1− pm) < 1− w(1− pm) = πm
results for the decision weight of xm. As w̃ increases with t, the weight of xm declines with
time delay.

That w̃ is more elevated than w constitutes the central implication of our model. Due to

subproportionality
w(p1st)

w(p1)
>

w(st)

w(1)

holds, i.e. comparing the delayed case with the atemporal one, the weight of the best possible

outcome is devalued less than the weight of the sure component. In other words, xm suffers more

strongly from delay than does x1. Thus, the presence of survival risk makes people appear more
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risk tolerant for delayed prospects than for present ones.20 The consequences for a regressive w

are clear. Figuratively speaking, the decision weight curve rotates counterclockwise: The right

tail of the outcome distribution gains more weight, whereas the left tail loses weight with delay.

If t is sufficiently large, the left tail may even be underweighted, as illustrated in Figure 1.

The top row of Figure 1 characterizes preferences in the atemporal case. Panel 1a shows a

typical specimen of a regressive probability weighting function for delay t = 0, underweighting

large probabilities and overweighting small probabilities of the best outcome. For illustrative

purposes, Panel 1b on the right side depicts the corresponding decision weights for a prospect

involving 21 equiprobable outcome levels, with outcome rank 1 denoting the best outcome and

outcome rank 21 the worst one. Their objective probabilities are represented on the horizontal

gray line. As one can see, a regressive w generates strong overweighting of the extreme outcomes

and underweighting of the intermediate ones relative to the objective probability distribution.

The middle row of Figure 1 demonstrates the predictions for one-shot resolution of uncer-

tainty, i.e. when prospects are played out and paid out simultaneously in the future. Future

uncertainty is captured by the parameter s = 0.8, i.e. the per-period prospect survival rate is

perceived to be 80%. When payoffs are delayed by two periods, t = 2, and uncertainty resolves

in one shot (n = 1) observed probability weights w̃ shift upwards, as shown in Panel 2a. This

shift transforms the decision weights as depicted in Panel 2b. Now the worst outcomes are un-

derweighted while the best ones are more strongly overweighted. For longer time delays these

effects become more pronounced and may lead to a substantial underweighting of the worst

outcomes. Thus, underweighting of adverse extreme events and, hence, underinsuring becomes

more likely with longer time horizons. The delay dependence of risk tolerance, therefore, pro-

vides a rationale for the underweighting of adverse tail events and the underinsurance puzzle.

Numerous experimental studies have found that risk tolerance is indeed higher for payoffs

materializing in the future than for payoffs materializing in the present (Jones and Johnson, 1973;

Shelley, 1994; Ahlbrecht and Weber, 1997; Sagristano, Trope, and Liberman, 2002; Noussair and

Wu, 2006; Coble and Lusk, 2010). More specifically, Abdellaoui, Diecidue, and Öncüler (2011)

conducted a carefully designed experiment eliciting probability weights for both present and

20In the domain of simple prospects (x, p), Baucells and Heukamp (2012) derive a time-dependent probability weight-
ing function w̃(p) = w(p exp(−rxt)), which obviously decreases with t. A crucial element of their model is rx, the
probability discount rate that is assumed to decrease with outcome magnitude. It is this assumption that drives
their result of risk premia declining with time delay.
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Figure 1: Delay Dependence and Process Dependence
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For purposes of illustration, the curves are derived from Prelec (1998)’s two-parameter probability weighting function

w(p) = exp
(
− β(− ln(p))α

)
, assuming a degree of subproportionality α = 0.5 and convexity β = 1. Survival risk s is

set at 0.8 per period. n denotes the number of (equally spaced) stages in the case of sequential evaluation. Top row

(1. atemporal): The graphs show atemporal probability weights w (Panel 1a) and their associated decision weights π

(Panel 1b) for a prospect involving 21 equiprobable outcomes, with outcome rank 1 denoting the best outcome. Their

objective probabilities are represented on the horizontal gray line. Middle row (2. one-shot): Panel 2a and 2b show

w̃ and π̃ for a delay of two periods, t = 2, when uncertainty resolves in one shot n = 1. Bottom row (3. sequential):

Panel 3a and 3b show w̃ and π̃, respectively, for a delay of two periods when uncertainty resolves sequentially in

n = 24 equally spaced stages, w̃(p) =
(

w
(
(pst)1/n

)
w
(
(st)1/n

) )n

.



delayed prospects, i.e. in our notation w(p) and w̃(p). Their results provide persuasive direct

support for our approach. They find four distinctive characteristics of delay-dependent prospect

valuation. First, the utility for money u does not react to time delay. Second, w̃ is significantly

more elevated than w in the aggregate as well as for the majority of the individuals. Third, an

additional six-month delay affects elevation less strongly than the first six-month delay. More-

over, w̃ appears to be less strongly curved than w.21 Another important finding of Abdellaoui,

Diecidue, and Öncüler (2011) concerns behavior under timing uncertainty. When their exper-

imental subjects did not know the exact timing of the payoffs, they acted as if the prospects’

delays were midway between the present and the longest delay in the experiment, 12 months.

This finding suggests that delay dependence is also present in situations when payoff dates, and

hence the resolution of uncertainty, are indeterminate.

Aside from delay-dependent risk tolerance, the model produces other interesting effects. For

one, w̃ is less elastic than w, implying less sensitivity to anticipated disappointment with respect

to delayed prospects. This prediction is in line with Trope and Liberman (2003)’s theory of tem-

poral construal, that posits that temporal distance changes the way people mentally represent

those events. The greater the temporal distance, the more likely are events to be represented in

terms of a few abstract features. Another insight concerns the role of emotions in the valuation

of delayed prospects. Regressiveness and subproportionality can be interpreted as people’s reac-

tions to emotions anticipated to occur at the time of uncertainty resolution. Regressiveness maps

emotions of elation and disappointment: Elation arises when the best possible outcome materi-

alizes in spite of an ex-ante low probability. Disappointment is anticipated to set in when the

best possible outcome fails to materialize in spite of an ex-ante high probability (Walther, 2003).

Subproportionality can capture the strength of these emotions: The higher the degree of subpro-

portionality, the more pronounced is the departure from linear weighting and, consequently, the

reactions to elation and disappointment. This result speaks not only to individual heterogene-

ity but also to situations that may trigger more or less fear. For example, in times of economic

crisis people may react much more strongly to anticipated emotions (Cohn, Engelmann, Fehr,

and Marechal, 2015), i.e. they may display a higher degree of subproportionality than in times

21In their study on ambiguity, Abdellaoui, Baillon, Placido, and Wakker (2011) show estimates of a probability weight-
ing curve derived from choices over prospects delayed by three months. This curve is also much more elevated than
typical atemporal estimates are (see for example Bruhin, Fehr-Duda, and Epper (2010)).
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of economic stability. Thus, in times of crisis, they will react more strongly to imminent risks but

more tolerant to risks resolving in the remote future. Finally, the wedge between w̃ and w also

increases with the degree of survival risk, implying, somewhat paradoxically, that observed risk

tolerance increases with subjective uncertainty.22

4.2 Sequential Resolution of Uncertainty

So far, we have considered the case of uncertainty resolving in one shot, the domain over which

atemporal risk preferences are defined.23 If uncertainty does not resolve in one shot but rather

sequentially over the course of time, future prospects lose their single-stage quality and turn

into multi-stage ones. In this case the question arises in which way multi-stage prospects are

transformed into single-stage ones. Essentially, there are two different transformation meth-

ods, reduction by probability calculus and folding back (Sarin and Wakker, 1994). In the case

of reduction by probability calculus, the probabilities of reaching the final outcomes are com-

pounded and probability weights are applied only to the resulting compounded probabilities.

Folding back means that a multi-stage prospect is evaluated recursively by replacing the nth-

stage prospect with its certainty equivalent and inserting the utility of the certainty equivalent

into the (n− 1)th-stage valuation formula and so forth. Thus, decision weights get compounded.

Several authors made a case against reduction as an appropriate mechanism of transforming

multi-stage prospects into single-stage ones (e.g. Segal (1990); Dekel, Safra, and Segal (1991);

Grant, Kajii, and Polak (1998)). Segal (1990) argues that even if the decision maker accepts the

basic laws of probability theory she may have a preference over the number of lotteries she

participates in, which invalidates reduction by probability calculus.

However, non-EU preferences raise the issue of dynamic consistency. Dynamic consistency

requires that choices or plans made at different times conform with one another (Sugden, 2004).

As Loomes and Sugden (1986) explain, any theory that accommodates the common-ratio effect

must dispense either with dynamic consistency or with reduction by the probability calculus.

22This finding mirrors Quiggin (2003)’s result of atemporal risk tolerance increasing with background risk.
23The ramifications of sequential prospect valuation have previously been analyzed for a different class of atemporal

risk preferences. Palacios-Huerta (1999)’s contribution focuses on process dependence in the context of Gul (1991)’s
model of disappointment aversion. He shows that a disappointment averse decision maker exhibits much larger
risk aversion when she evaluates a prospect sequentially rather than in one shot. Dillenberger (2010) provides an
axiomatic underpinning for this result and an insightful discussion of the consequences of a preference for one-shot
resolution of uncertainty on the value of information. See also Cerreia-Vioglio, Dillenberger, and Ortoleva (2015).
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Therefore, if the decision maker cares only about the total probabilities of the final outcomes she

will be dynamically inconsistent unless she precommits herself to stick to her original plans.24

Folding back, on the other hand, ensures dynamic consistency but, as Proposition 2 will show,

has substantial consequences for revealed risk taking behavior (see also Sarin and Wakker (1992)).

In the following, we set ρ = 1 for ease of exposition.

Let us first consider a two-outcome prospect P = (x1, p; x2) resolving in two stages, n = 2,

such that uncertainty is partially resolved at some future time t1 and fully resolved at the payment

date t > t1, as depicted in Figure 2. Applying folding back, the resulting two-stage prospect is

evaluated as

[V2(P̃)]0 =
(

u(x1)− u(x2)
)

w
(

p
t1
t st1

)
w
(

p
t−t1

t st−t1

)
+ u(x2)w

(
st1
)

w
(
st−t1

)
=

((
u(x1)− u(x2)

)w
(

p
t1
t st1

)
w
(

p
t−t1

t st−t1

)
w(st1)w(st−t1)

+ u(x2)

)
w
(
st1
)

w
(
st−t1

)
=

((
u(x1)− u(x2)

)
w̃2(p) + u(x2)

)
ρ̃2(t) ,

(15)

which yields the relationship

w̃2(p) =
w
(

p
t1
t st1

)
w
(

p
t−t1

t st−t1

)
w (st1)w (st−t1)

(16)

as ρ̃2(t) = w
(
st1
)

w
(
st−t1

)
is interpreted as the discount weight attached to the allegedly

certain outcome x2. Subproportionality ensures that

w̃2(p) =
w
(

p
t1
t st1

)
w
(

p
t−t1

t st−t1

)
w (st1)w (st−t1)

<
w(pst)

w(st)
= w̃(p) , (17)

one of the main results generalized in Proposition 3. Now suppose that the interval [0, t] is

partitioned into n subintervals with lengths τi, i ∈ {1, ..., n}, such that ∑n
i=1 τi = t. In this case,

it is straightforward to show for any number of outcomes m ≥ 1 that the observed probability

weights are given by

w̃n(p, t) =
∏n

i=1 w
(

p
τi
t sτi

)
∏n

i=1 w (sτi)
=

n

∏
i=1

w̃
(

p
τi
t , τi

)
. (18)

24A time-inconsistent decision maker will become progressively less risk tolerant as the payment date draws nearer.
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Figure 2: Sequential Resolution of Uncertainty
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Compounding of subproprtional probability weights w(p) exhibits several features that are

crucial for observed risk tolerance, the subject of Proposition 3. The following Proposition 2

focuses on these characteristics of the underlying atemporal probability weights, which appear

both in the numerator and the denominator of w̃.

PROPOSITION 2:

Given subproportionality of w, s ≤ 1, t > 0, and folding back:

1. Probability weights for one-shot resolution of uncertainty are greater than probability weights

for sequential resolution.

2. For a given number of resolution stages n, probability weights are smallest for equally

spaced partitions τi =
t
n = τ.

3. For equally spaced partitions, probability weights decline with the number of resolution

stages n.
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Proof of Proposition 2.

1. Setting q = pst or q = st, respectively, we prove by induction that w(q) > ∏n
i=1 w(qi) for

probability q, 0 < q < 1, and q = ∏n
i=1 qi.

• For n = 2 subproportionality implies w(q) = w(q1q2) > w(q1)w(q2).

• Assume that w(∏n
i=1 ri) > ∏n

i=1 w(ri) for any probabilities 0 < ri < 1.

• For q = ∏n+1
j=1 qj subproportionality implies

w(q) = w

(
qn+1

n

∏
i=1

qi

)
> w(qn+1)w

(
n

∏
i=1

qi

)
> w(qn+1)

n

∏
i=1

w(qi) =
n+1

∏
j=1

w(qj).

2. Without loss of generality, we reorder the sequence of subintervals such that τ1 ≤ τ2 ≤ ... ≤

τn. For some i, τi−1 < τi holds because otherwise the partition would be equally spaced

right away. In this case, there exists ε > 0 such that τi−1 + ε < τi − ε is still satisfied. Due to

subproportionality, the following relationship holds for 0 < q < 1:

w(qτi−1)

w(qτi−ε)
>

w(qτi−1 qε)

w(qτi−εqε)
=

w(qτi−1+ε)

w(qτi)
, (19)

implying w(qτi−1)w(qτi) > w(qτi−ε)w(qτi−1+ε).

3. Consider two equally spaced partitions of [0, t]: (τi = t
n =: τ)i=1,...,n and (δi = t

n−1 =:

δ)i=1,...,n−1. Our claim is that for 0 < p ≤ 1,

n

∏
i=1

w
(

p
τ
t sτ
)
<

n−1

∏
i=1

w
(

p
δ
t sδ
)

. (20)

Setting q =
(

p
1
t s
) t

n(n−1) , we examine whether

(
w
(

qn−1
))n

<

(
w
(
qn))n−1

. (21)

Proceeding by induction:

• n = 2: Subproportionality implies
(

w(q)
)2

< w
(

q2
)

.
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• n = 3: Subproportionality implies w
(

q3
)
>

(
w(q2)

)2

w(q) . Thus,

(
w(q3)

)2
>

(
w(q2)

)2

w(q)

(
w(q2)

)2

w(q)
>

(
w(q2)

)3
w(q2)(

w(q)
)2

>

(
w(q2)

)3(
w(q)

)2

(
w(q)

)2 =
(

w(q2)
)3

(22)

• n→ n+ 1: Suppose that
(

w(qn−1)
)n

<
(

w(qn)
)n−1

holds. Subproportionality implies
w(qn−1)

w(qn)
> w(qn)

w(qn+1)
. Hence,

(
w(qn+1)

)n
>

(
w(qn)w(qn)

w(qn−1)

)n

=

(
w(qn)

)n+1(
w(qn)

)n−1

(
w(qn−1)

)n

>

(
w(qn)

)n+1(
w(qn−1)

)n

(
w(qn−1)

)n =
(

w(qn)
)n+1

(23)

Proposition 2 holds for any probability 0 < q < 1, in particular for probabilities q = pst and

q = st. Therefore, compounding probability weights and discount weights over several stages

generates a smaller prospect value overall. In other words, a decision maker with subpropor-

tional preferences prefers uncertainty to be resolved in one shot at the payment date t rather than

sequentially over the course of time.25 Note that this result does not hold generally under sub-

proportionality in RDU but only applies to the class of prospects studied here, i.e. prospects that

are devalued by survival risk without effects on the rank order of the outcomes (see Dillenberger

(2010)’s necessary and sufficient criterion for preferences for one-shot resolution and our discus-

sion in Appendix B). Moreover, the prospect’s minimum value is attained when compounding

over equiprobable stages. This finding constitutes a generalization of Segal (1990)’s results for
25A special case is the valuation of allegedly certain future payoffs, which constitute simple prospects in our frame-

work. A myopic decision maker, applying folding back, will exhibit a discount weight of w
(
st1
)

w
(
st−t1

)
< w

(
st),

an incident of subadditive discounting, which has found experimental support (Read, 2001; Read and Roelofsma, 2003;
Ebert and Prelec, 2007; Epper, Fehr-Duda, and Bruhin, 2009; Dohmen, Falk, Huffman, and Sunde, 2012).
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two-stage prospects in an atemporal setting. Partitions of equal length correspond to the least

degenerate multi-stage prospect and can be interpreted as the comparatively most ambiguous

situation, which is strongly disliked by people with subproportional preferences. Because of this

characteristic, Segal (1987b) proposes to model ambiguity aversion by subproportional risk pref-

erences over two-stage lotteries.26 Finally, increasing the number of stages depresses prospect

value.

Proposition 2 shows the implications of subproportionality on overall prospect valuation.

However, since observed risk tolerance depends on the interaction of probability weights and

discount weights, it is a priori not clear whether these characteristics carry over to risk toler-

ance observed for delayed prospects. As it turns out, with one exception, the characteristics of

atemporal risk attitudes shape delay-dependent risk tolerance accordingly:

PROPOSITION 3:

Given subproportionality of w, s ≤ 1, t > 0, and folding back:

1. Risk tolerance is higher for one-shot resolution of uncertainty than for sequential resolution
of uncertainty: w̃(p, t) > w̃n(p, t).

2. For a given number of resolution stages n, risk tolerance is lowest for equally spaced parti-
tions if the elasticity of w is concave.

3. For equally spaced partitions, risk tolerance declines with the number of resolution stages:
w̃n(p, t) < w̃n−1(p, t).

Proof of Proposition 3.

1. Consider Equation 18:

w̃n(p, t) =
n

∏
i=1

w̃
(

p
τi
t , τi

)
.

Note that w̃
(

p
τi
t , τi

)
=

w
(

p
τi
t sτi

)
w(sτi )

<
w
(

p
τi
t sτi st−τi

)
w(sτi st−τi)

=
w
(

p
τi
t st
)

w(st)
= w̃

(
p

τi
t , t
)

.

According to Proposition 1, w̃ (p, t) is subproportional for a fixed length of delay t and,
therefore,

26A recent paper by Dillenberger and Segal (2014) shows that such an approach has another attractive implication: It
is able to solve Machina (2009, 2014)’s paradoxes which involve a number of situations where standard models of
ambiguity aversion are unable to capture plausible features of ambiguity attitudes (Baillon, l’Haridon, and Placido,
2011).
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w̃n(p, t) <
n

∏
i=1

w̃
(

p
τi
t , t
)
< w̃

(
n

∏
i=1

p
τi
t , t

)
= w̃(p, t) . (24)

2. We proceed by induction.

• Consider the case of n = 2 and assume that the time interval of length t is divided
into two subintervals of lengths τ and t − τ with τ < t/2 < t − τ. We compare
w̃n corresponding to the evenly spaced partition (t/2, t/2) with the respective w̃n for
(τ, t− τ) by examining when

w
(
(p1/ts)t/2)w

(
(p1/ts)t/2)

w(st/2)w(st/2)
<

w
(
(p1/ts)τ

)
w
(
(p1/ts)t−τ

)
w(sτ)w(st−τ)

holds. Rearranging terms yields

w
(
(p1/ts)t/2)w

(
(p1/ts)t/2)

w((p1/ts)τ)w((p1/ts)t−τ)
<

w(st/2)w(st/2)

w(sτ)w(st−τ)
.

Since p1/ts < s for any 0 < p < 1, this condition amounts to requiring that w(qt/2)w(qt/2)
w(qτ)w(qt−τ)

increases in q, 0 < q < 1. It is straightforward to show that its derivative with respect
to q equals

∂

∂q

(
w(qt/2)w(qt/2)

w(qτ)w(qt−τ)

)
=

t
(
w(qt/2)

)2

qw(qτ)w(qt−τ)

(
εw(qt/2)−

(
λεw(qτ) + (1− λ)εw(qt−τ)

))
,

where λ = τ/t. As τ < t/2 < t− τ and εw(qt−τ) < εw(qt/2) < εw(qτ), the term in the
brackets is positive if the elasticity of w, εw, is a strictly concave function.

• For n ≥ 2 the general formula for the derivative reads as(
w(qt/n)

)n

q ∏n
i=1 w(qτi)

(
tεw(qt/n)−

n

∑
i=1

τiεw(qτi)

)
,

where (τi)i=1,...,n is a partition of the time interval t with ∑n
i=1 τi = t.

• n→ n + 1: Assume that for t > 0

tεw(qt/n)−
n

∑
i=1

τiεw(qτi) > 0 (25)

holds. Define a partition (δi)i=1,...,n+1 of t as follows:

δi =
nτi

n + 1
for 1 ≤ i ≤ n

δn+1 =t−
n

∑
i=1

δi =
t

n + 1
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Then the following relationships result:

n+1

∑
i=1

δiεw

(
qδi
)
=

n

∑
i=1

nτi

n + 1
εw

(
q

nτi
n+1

)
+

t
n + 1

εw

(
q

t
n+1

)

tεw

(
q

t
n+1

)
− t

n + 1
εw

(
q

t
n+1

)
=

tn
n + 1

εw

(
q

t
n+1

)
Since Equation 25 holds for any t > 0 and, therefore, also for t̃ = tn

n+1 and τ̃i =
nτi

n+1 ,

t̃εw

(
qt̃/n

)
−

n

∑
i=1

τ̃iεw
(
qτ̃i
)
> 0, (26)

which implies
tn

n + 1
εw

(
q

t
n+1

)
−

n

∑
i=1

nτi

n + 1
εw

(
q

nτi
n+1

)
> 0. (27)

3. We examine whether
(

w((p1/ts)t/n)
w(st/n)

)n
<
(

w((p1/ts)t/(n−1))

w(st/(n−1))

)n−1
, which is equal to the condition

that (
w((p1/ts)t/n)

)n(
w((p1/ts)t/(n−1))

)n−1 <

(
w(st/n)

)n(
w(st/(n−1))

)n−1 .

Therefore, we examine whether the derivative of (w(qt/n))
n

(w(qt/(n−1)))
n−1 with respect to q is positive.

It is straightforward to show that

∂
(w(qt/n))

n

(w(qt/(n−1)))
n−1

∂q
=

t
(
w(qt/n)

)n

q
(
w
(
qt/(n−1)

) )n−1

(
εw

(
qt/n

)
− εw

(
qt/(n−1)

))
> 0 (28)

as the elasticity of w is increasing.

Preference for one-shot resolution of uncertainty is embodied in the characteristics of atempo-

ral risk preferences. However, risk tolerance is additionally influenced by its delay dependence.

Consider a prospect with a long time horizon t. If its total uncertainty is resolved in one shot, all

the decision weights w̃ and q̃ attain their maximum values. If uncertainty resolves sequentially,

both types of weights are smaller than in the one-shot case. For evenly spaced partitions, this

effect gets more pronounced the finer is the partition of delay t into subintervals. Therefore,

anticipating to watch uncertainty resolve over time considerably dampens the effect of long time

horizons on observed risk tolerance, because the decision maker is frequently exposed to the

possibility of a disappointing outcome.

26



Contrary to the atemporal case, subproportionality alone does not guarantee that risk toler-

ance for a given number of resolution stages attains its minimum at evenly spaced partitions,

however. The additional requirement of concavity of the elasticity of w implies that the elasticity

increases more quickly for small probabilities than for large ones. While such a characteristic

has not attracted any attention in the literature, there is a nice example of a subproportional

regressive probability weighting function with a concave elasticity, promoted, for example, by

Chateauneuf, Eichberger, and Grant (2007): the so-called neo-additive specification

w(p) =


0 for p = 0

β + αp for 0 < p < 1

1 for p = 1

. (29)

with 0 < β < 1, 0 < α ≤ 1− β. It is linear over the inner probability interval and, thus,

provides an excellent approximation for the commonly used nonlinear functional forms. Since

we rarely, if at all, have experimental evidence for behavior over probabilities that are extremely

small or extremely large, such an approximation seems justified.

The consequences of sequential valuation for the tails of the outcome distribution are straight

forward if w is regressive. The weight of the right tail π̃n(x1) = w̃n(p1) < w̃(p1). Therefore,

overweighting of x1 declines relative to the one-shot situation. The weight of the left tail increases

as π̃n(xm) = 1− w̃n(1− pm) > 1− w̃(1− pm) holds. Depending on the number of resolution

stages over which probability weights are compounded, this increase may lead to a considerable

overweighting of the worst outcomes and, consequently, to pronounced risk aversion.

The bottom row of Figure 1 demonstrates the effect of sequential valuation on probability

weights and decision weights for a delay of t = 2. If a prospect is evaluated in 24 equally spaced

time intervals, n = 24, the probability weighting curve takes on a convex form, which implies

strong risk aversion. The associated decision weights for our reference prospect involving 21

equiprobable outcomes are depicted in Panel 3b. The decision weight curve now rotates clock-

wise: The worst outcomes are strongly overweighted while the best outcomes are considerably

underweighted. Sequential valuation, therefore, has a dramatic effect on the overweighting of

adverse tail events. This effect may be called myopic probability weighting in the style of myopic

loss aversion (Benartzi and Thaler, 1995) which has similar consequences on risk taking behavior
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when short-sighted investors are frequently exposed to the possibility of incurring losses. Fur-

thermore, being able to observe the resolution of uncertainty over time leads to a pronounced

willingness to take out insurance. Therefore, investments in the predictability of natural disasters

may have a beneficial effect on insurance take up as well as on mitigation measures.

5 Discussion

Most economically important decisions, may they concern health, wealth, love or education in-

volve a significant interval between the time that the decision is made and the time that all uncer-

tainty is completely resolved. Our contribution provides a novel view on perplexing real-world

behaviors such as the underinsurance puzzle. We show that if people view the future as inher-

ently uncertain and are susceptible to probability weighting, their risk tolerance varies greatly

depending on the length of delay and their perception of uncertainty resolution. When the pas-

sage of time does not play a significant role, a typical decision maker overweights both tails of

an outcome distribution. This feature of risk preferences explains people’s skewness preferences,

favoring positively skewed distributions and disfavoring negatively skewed ones (Lovallo and

Kahneman, 2000; Ebert and Wiesen, 2011; Barberis, 2013b; Ebert, 2015). If uncertainty resolves in

the future, however, adverse tail events receive progressively less weight and, for long time hori-

zons, may even be substantially underweighted, thereby greatly reducing people’s willingness to

buy insurance.

Delay- and process-dependent risk tolerance not only affects individuals’ welfare but also so-

ciety at large. People’s reluctance to take out insurance for floods and earthquakes, for example,

poses serious problems when disaster actually strikes. It is practically impossible for the public

authorities to deny assistance once there are identified victims and their stories are publicized in

the news (Viscusi, 2010). In the context of climate policy, it takes decades or even centuries until

the stock of pollutants will be sufficiently reduced to see any gaugeable effect of society’s abate-

ment endeavors. If there is both great uncertainty about the effectiveness of abatement policies

and lack of feedback, the risk tolerance of a large percentage of the population may be extremely

high and, therefore, it is likely that they are opposed to financing abatement measures. It remains

to be seen whether endeavors to combat global warming will be met with more support once its

effects become more visible.
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Stock market investors’ time horizons may also be long-term in principle but, contrary to

natural disasters, information on portfolio performance is easily accessible and, due to its om-

nipresence in the news, hard to ignore. Thus, uncertainty resolves practically in real time, which

substantially counteracts the otherwise risk-tolerance increasing effect of long investment hori-

zons. Recently, the term structure of market risk premia has attracted considerable attention

(Andries, Eisenbach, and Schmalz, 2015; Eisenbach and Schmalz, 2016). The empirical evidence

points to a downward sloping curve, i.e. assets with short maturities seem to earn much higher

risk premia than assets with long maturities (van Binsbergen, Brandt, and Koijen, 2012), which

contradicts the predictions of standard asset-pricing models. Consequently, new models of as-

set pricing work with the assumption of horizon-dependent risk tolerance (Khapko, 2015). Our

model provides a rational for both, high risk premia, because of the gradual resolution of uncer-

tainty, and risk premia declining with maturity, because of the delay-dependence of risk toler-

ance.

Referring to experimental evidence in atemporal settings, Hertwig, Barron, Weber, and Erev

(2004) suggest an alternative explanation for the underweighting of tail events. They argue that

overweighting occurs in situations when risks are described in abstract terms. However, when

people decide on the basis of their own experience by sampling the distributions, they tend to

underweight tail events. This claim has triggered a heated debate on the so-called description-

experience gap (Barberis, 2013a; de Palma, Abdellaoui, Attanasi, Ben-Akiva, Erev, Fehr-Duda,

Fok, Fox, Hertwig, Picard, Wakker, Walker, and Weber, 2014). Recently, Abdellaoui, L’Haridon,

and Paraschiv (2011) showed that, contrary to the case of fully described risks, having to find out

themselves about outcomes and probabilities by experience sampling makes people considerably

more pessimistic, which manifests itself in a less elevated probability weighting curve. In other

words, ambiguity about distributions shifts the probability weighting curve downwards, which

may explain the underweighting of rare extreme events observed in experiments. Many empirical

facts in finance, insurance and gambling are consistent with the overweighting of tail events,

however. According to Hertwig, Barron, Weber, and Erev (2004)’s claim all these phenomena

would have to be based on described risks. In our view, it seems implausible that in many

real-world situations people’s decisions are based solely on abstract descriptions rather than on

their own or somebody else’s experience. Turning back to our example in the introduction: Why
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should choices over a regular life insurance policy be driven by experience and choices over a

flight insurance policy by description?

Models of probability weighting have proven to be quite successful in organizing the results

of countless experiments. Recently, it has been recognized that they are useful for explaining

field data as well. Here we show that extending the realm of probability weighting from timeless

decisions to intertemporal ones helps rationalize the coexistence of over- and underweighting

of tail events, a puzzle unsolved so far. Whether the mechanism we suggest is actually driving

behavior needs to be assessed by future work. The model presented in this paper provides a host

of novel testable predictions which, we hope, will encourage researchers to conduct experiments

to gauge the extent of its applicability.

30



Appendix A The Case of Ambiguity

In real-world settings probabilities are rarely known to the decision maker. With the exception of

some games of chance, such as tossing a coin or playing roulette, the decision maker has to assess

the likelihoods of ambiguous events. Our model is cast in terms of objectively given probabilities,

however. Thus, the question arises whether our results are portable to the domain of ambiguity.

In this domain, the following framework is usually applied: S is a set of exhaustive and

mutually exclusive states of nature. One of these states s ∈ S will obtain, but the decision maker

is unsure which one it will be. Subsets of S are called events and denoted by A. Prospects, often

termed acts, are described as P = (x1, A1; ...; xm, Am), which yield the monetary outcome if the

event Ai contains the true state of nature. Outcomes are rank ordered xi, x1 > x2 > ... > xm and

(A1, A2, ..., Am) is a partition of the state space. To accommodate ambiguity, RDU is generalized

to Choquet Expected Utility Theory (Schmeidler, 1989), which features a weighting function

W(A). W is a capacity satisfying W(�) = 0, W(S) = 1, and monotonicity with respect to set

inclusion, i.e. A ⊂ B =⇒W(A) ≤W(B). Decision weights πi are constructed analogously to the

case of risk:

πi =

 W(A1) for i = 1,

W
(⋃i

k=1 Ak

)
−W

(⋃i−1
k=1 Ak

)
for 1 < i ≤ m.

(30)

As before, the prospect’s value is represented by

V(P) =
m

∑
i

u(xi)πi . (31)

There is a large literature in the psychology of judgment which suggests that, generally, peo-

ple tend to overweight the likelihood of rare events and underweight the likelihood of probable

events. A prominent example are the frequency estimates for causes of death reported in Tver-

sky and Koehler (1994). The same pattern of behavior has been found in experimental research

on decisions under ambiguity (Tversky and Wakker, 1995; Gonzalez and Wu, 1999; Kilka and

Weber, 2001; Abdellaoui, Vossmann, and Weber, 2005). In the literature, this pattern of over-

weighting and underweighting is discussed under the heading of subadditivity, a consequence

of diminishing sensitivity towards probabilities when moving away from certainty and impossi-
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bility (Einhorn and Hogarth, 1985; Fox and See, 1993; Wakker, 2004).27 Formally, subadditivity

comprises two conditions, lower subadditivity SA and upper subadditivity SA:

SA : W(A) ≥W(A ∪ B)−W(B), (32)

SA : 1−W(S− A) ≥W(A ∪ B)−W(B), (33)

provided that A∩ B = � and W(A∪ B) and W(B) are bounded away from 1 and 0, respectively.28

Experimental studies suggest that subadditivity is more pronounced under ambiguity than

under risk, which induced Tversky and Fox (1995) to suggest a two-stage model, formalized

in Wakker (2004): Consider an ambiguous prospect (x, A) that pays x in the event that A oc-

curs and zero otherwise. Furthermore, assume that its value can be represented by V((x, A)) =

u(x)W(A). Elicit the matching probability p̂(A) such that the decision maker is indifferent be-

tween the risky prospect (x, p̂) and the ambiguous prospect (x; A). Then W(A) can be decom-

posed as

W(A) = w( p̂(A)), (34)

where w is the probability weighting function for risk. This decomposition has been used in a

number of experimental studies (Abdellaoui, Vossmann, and Weber, 2005; Baillon, 2008; Baillon,

Huang, Selim, and Wakker, 2016). The probability weighting function w for decisions under

ambiguity has been found to differ from the pure risk case in that it is more strongly subadditive

(Abdellaoui, Baillon, Placido, and Wakker, 2011), with the degree of departure from the risk case

depending on the source of uncertainty, i.e. the concrete decision context (i.e. whether ambiguity

concerns the composition of Ellsberg urns, the temperature in a specific city the following day,

the movement of a specific stock index, etc.).

The crucial link to our analysis is that subadditivity is implied by strong regressiveness of

the probability weighting function (for a proof see Prelec (1998), footnote 10). Therefore, all

our predictions also apply to the case of ambiguity. We use these insights to develop a graphical

representation of such a two-stage model which serves as basis for illustrating the effects of delay

on behavior under ambiguity.

27Subadditivity also drives the famous Allais common consequence effect (Wu and Gonzalez, 1998).
28An example involving decision weights akin to our approach can be found in Chateauneuf, Eichberger, and Grant

(2007).
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Figure 3: Ambiguous Probabilities
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Panel a: The dashed curve corresponds to subjective probabilities p̂ assumed to follow the regularity p̂ = 0.1 + 0.7p,

where p denotes empirical frequency. w(p) is Prelec’s functional specification with α = 0.64 and β = 1.03 applied to

p̂ (solid curve). Panel b: The solid curve depicts w̃( p̂) constructed according to Equation 9 with s = 0.8 and t = 2.

The curves in Figure 3 are constructed in the following way: In these graphs, probabilities

p are in principle objectively given but the decision maker does not know them with precision,

for example empirically observed frequencies of specific events. The decision maker judges the

likelihoods p̂ of these events (or reports choice-based probabilities). These probabilities are repre-

sented by the dashed lines in Figure 3, which mimic typical findings on the relationship between

subjective judgments p̂ and observed frequencies p (e.g. Fox and Tversky (1998), Figure 5). Ap-

plying w with parameters found in the literature (Abdellaoui, Baillon, Placido, and Wakker, 2011)

to p̂ renders the probability weighting curve w(p) as a function of observed frequencies (solid

curves in the figure). Panel a shows atemporal preferences, whereas Panel b depicts the case

of delaying payoffs by 2 periods. As one can see, the resulting probability weighting curves for

ambiguity are much less strongly curved than in the risky situation displayed in Figure 1, in fact,

they closely resemble neo-additive curves. Qualitatively the same implications for behavior over

delayed prospects arise.

33



Appendix B A Note on Sequential Evaluation

In his Proposition 1, Dillenberger (2010) shows that, under recursivity, negative certainty in-

dependence (NCI) and a weak preference for one-shot resolution of uncertainty (PORU) are

equivalent. The NCI axiom requires the following to hold: If a prospect P = (x1, r; x2) is weakly

preferred to a degenerate prospect D = (y, 1), then mixing both with any other prospect does

not result in the mixture of the degenerate prospect D being preferred to the mixture of P. This

axiom is weaker than the standard independence axiom and does not put any restrictions on the

reverse preference relation when a degenerate prospect is originally preferred to a nondegenerate

one. The latter case characterizes the typical Allais certainty effect. NCI allows for Allais-type

preference reversals but does not imply them. David Dillenberger’s Proposition 3 demonstrates

that NCI is generally incompatible with rank-dependent utility unless the probability weighting

function is linear, i.e. unless RDU collapses to EUT. An intuitive explanation for Dillenberger’s

Proposition 3 is that under RDU prospect valuation is sensitive to the rank order of the outcomes

and, therefore, mixtures with other prospects may affect the original rank order of outcomes

in P (and D). How does Dillenberger’s result relate to our claim that subproportional proba-

bility weights conjointly with recursivity imply a strong preference for one-shot resolution of

uncertainty?

The crucial insight is that for the class of prospects studied in this paper changes in rank

order do not occur and, hence, NCI is satisfied. To see this, assume that the prospect (x1, p; x2),

x1 > x2 ≥ 0, gets resolved in two stages
(
(x1, r; x2), q; (x2, 1)

)
such that p = qr. In the atemporal

case, when there is no additional survival risk, the two-stage prospect continues to be a strictly

two-outcome one and the only relevant mixtures are those involving x2. Suppose that P =

(x1, r; x2) % (y, 1) = D, with x1 > y > x2 and consider the following mixtures with (x2, 1− λ) for
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some λ ∈ (0, 1): P′ = (x1, λr; x2) and D′ = (y, λ; x2). The following relationships hold:

P % D ⇒ V(P) =
(

u(x1)− u(x2)
)

w(r) + u(x2) ≥ u(y) = V(D)

V(D′) = u(y)w(λ) + u(x2)
(

1− w(λ)
)

≤
((

u(x1)− u(x2)
)

w(r) + u(x2)

)
w(λ) + u(x2)

(
1− w(λ)

)
=
(

u(x2)− u(x1)
)

w(r)w(λ) + u(x2)

<
(

u(x2)− u(x1)
)

w(λr) + u(x2)

= V(P′)

(35)

because w(r)w(λ) < w(λr) for any λ ∈ (0, 1) (and hence also for λ = q) due to subproportional-

ity of w. Consequently, for mixtures with the smaller outcome x2, NCI, and therefore also PORU,

is strongly satisfied. If the mixing prospect may be any arbitrary prospect, in other words if

surprises are possible in the course of uncertainty resolution, this result does not hold generally.

The only surprise that is still admissible is the occurrence of an outcome worse than x2, say z.

Define P′′ =
(

x1, λr; x2, λ(1− r); z
)

and D′′ = (y, λ; z).

V(D′′) = u(y)w(λ) + u(z)
(

1− w(λ)
)

≤
((

u(x1)− u(x2)
)

w(r) + u(x2)

)
w(λ) + u(z)

(
1− w(λ)

)
=
(

u(x1)− u(x2)
)

w(r)w(λ) +
(

u(x2)− u(z)
)

w(λ) + u(z)

<
(

u(x1)− u(x2)
)

w(λr) +
(

u(x2)− u(z)
)

w(λ) + u(z)

= V(P′′)

(36)

For u(z) = 0, this case is exactly the situation studied in this paper when survival risk comes

into play.
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Appendix C Subproportionality

In this section we review a number of probability weighting functions that are either globally

or locally subproportional. We limit our attention to functional forms with at most two param-

eters. Recall that subproportionality is equivalent to increasing elasticity. Consequently, if the

elasticity is U-shaped, the function is superproportional over the range of small probabilities

and subproportional over large probabilities. These functions capture the certainty effect but not

necessarily general common-ratio violations. Many specifications used in the literature exhibit

such a characteristic. Some experimenters found reverse common-ratio violations which require

superproportionality over the relevant probability range (see e.g. Blavatskyy (2010)). Ultimately,

it is an empirical issue whether locally or globally subproportional functions fit better.

Polynomials are linear in the parameters and, thus, generally less flexible than specifications

that are nonlinear in the parameters. Note that second-order polynomials demarcate the inter-

section of the class of quadratic utility and RDU (see also the discussion in Masatlioglu and

Raymond (2016)).

Gul (1991)’s theory of disappointment aversion, for example, implies a strictly convex sub-

proportional function in the context of RDU for two-outcome prospects. Another interesting

specimen is the probability weighting function discussed in Delquié and Cillo (2006). In the

context of RDU, their model of disappointment aversion generates a subproportional second-

order polynomial that is equivalent to the one implied by Kőszegi and Rabin (2007)’s choice-

acclimating personal equilibrium, which provides an endogenous reference point (Masatlioglu

and Raymond, 2016). The same polynomial also emerges in Safra and Segal (1998)’s approach to

constant risk aversion. This concept captures the idea that a decision maker commits to a choice

long before uncertainty is resolved, and is, therefore, particularly plausible in the context of our

model. Bordalo, Gennaioli, and Shleifer (2012) derive (discontinuous) context-dependent proba-

bility distortions from their salience theory. While their concave segment is superproportional,

the convex segment is subproportional, both of the Gul (1991) variety with 0 < β < 1 and β > 1,

respectively. The psychological mechanisms underlying probability weighting, therefore, often

imply at least some extent of subproportionality.
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Table 2: Probability Weighting Functions

Probability weighting function w(p) Parameter range Elasticity∗ Shape∗∗ Reference

pα α > 1 constant convex
Luce, Mellers, and Chang
(1993)

p
2−p - increasing convex Yaari (1987)

exp
(
− β(− ln(p))α

)
0 < α < 1, β > 0

increasing, con-
cave/convex

regressive Prelec (1998)

α = 1, β > 1 constant convex Prelec (1998)1

pα

(pα+(1−p)α)1/α 0.279 < α < 1 U-shaped regressive Tversky and Kahneman (1992)
βpα

βpα+(1−p)α 0 < α < 1, β > 0 U-shaped regressive Goldstein and Einhorn (1987)
0 < α < 1, β = 1 U-shaped regressive Karmarkar (1979)

α = 1, β < 1
increasing, con-
vex

convex
Rachlin, Raineri, and Cross
(1991)

see text see text
Bordalo, Gennaioli, and
Shleifer (2012)2

p+αp(1−p)
1+(α+β)p(1−p) α > 0, β > 0 U-shaped regressive Walther (2003){

β1−α pα if (i) 0 ≤ p ≤ β
1− (1− β)1−α(1− p)α if (ii) β < p ≤ 1

0 < α, β < 1
(i) constant, (ii)
increasing

regressive
Abdellaoui, l’Haridon, and
Zank (2010)3

p
1+(1−p)β

β > 1
increasing, con-
vex

convex Gul (1991)6

p− αp + αp2 0 < α < 1
increasing, con-
cave

convex
Masatlioglu and Raymond
(2016); Delquié and Cillo
(2006); Safra and Segal (1998)4

p + 3−3β
α2−α+1 (αp− (α + 1)p2 + p3) 0 < α, β < 1 U-shaped regressive Rieger and Wang (2006)

p− αp(1− p) + βp(1− p)(1− 2p) α depends on β variety variety Blavatskyy (2014)5
0 for p = 0
β + αp for 0 < p < 1
1 for p = 1

0 < β < 1, 0 <
α ≤ 1− β

increasing, con-
cave

regressive
Bell (1985); Cohen (1992);
Chateauneuf, Eichberger, and
Grant (2007)

∗ Increasing elasticity is equivalent to subproportionality. ∗∗ An inverse-S shape means that both tails are overweighted, i.e. that the weighting function is regressive.
(1) Equivalent to power specification w(p) = pβ.
(2) The weighting function consists of a concave and a convex segment with a jump discontinuity in between (see text).
(3) For α > 1, β = 1 constant elasticity, convex; for α < 1, β = 0 increasing elasticity, convex.
(4) Special case of Blavatskyy (2014) with β = 0.
(5) Specific parameter constellations with β > 0 generate regressive with U-shaped elasticity.
(6) Identical to Rachlin, Raineri, and Cross (1991).
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Delquié, P., and A. Cillo (2006): “Disappointment Without Prior Expectation: a Unifying Per-

spective on Decision Under Risk,” Journal of Risk and Uncertainty, 33, 197–215.

Diecidue, E., and P. P. Wakker (2001): “On the Intuition of Rank-Dependent Utility,” Journal of

Risk and Uncertainty, 23(3), 281–298.

Dillenberger, D. (2010): “Preferences for One-Shot Resolution of Uncertainty,” Econometrica,

78(6), 1973–2004.

Dillenberger, D., and U. Segal (2014): “Recursive Ambiguity and Machina’s Examples,” Inter-

national Economic Review, 56, 55–61.

Dohmen, T., A. Falk, D. Huffman, and U. Sunde (2012): “Interpreting Time Horizon Effects in

Inter-Temporal Choice,” IZA Discussion Paper No. 6385.

Ebert, J., and D. Prelec (2007): “The Fragility of Time: Time-Insensitivity and Valuation of the

Near and Far Future,” Management Science, 53(9), 1423–1438.

41



Ebert, S. (2015): “On Skewed Risks in Economic Models and Experiments,” Journal of Economic

Behavior and Organization, 112, 85–97.

Ebert, S., and D. Wiesen (2011): “Testing for Prudence and Skewness Seeking,” Management

Science, 57(7), 1334–1349.

Einhorn, H. J., and R. M. Hogarth (1985): “Ambiguity and Uncertainty in Probabilistic Infer-

ence,” Psychological Review, 92(4), 433–461.

Eisenbach, T. M., and M. C. Schmalz (2016): “Anxiety in the Face of Risk,” Journal of Financial

Economics, 121(2), 414–426.

Epper, T., and H. Fehr-Duda (2015a): “Comment on “Risk Preferences Are Not Time Prefer-

ences”: Balancing on a Budget Line,” American Economic Review, 105(7), 2261–2271.

(2015b): “The Missing Link: Unifying Risk Taking and Time Discounting,” Working Paper.

Epper, T., H. Fehr-Duda, and A. Bruhin (2009): “Uncertainty Breeds Decreasing Impatience:

The Role of Risk Preferences in Time Discounting,” Working Paper, Institute for Empirical Research

in Economics, University of Zurich, 412.

(2011): “Viewing the Future through a Warped Lens: Why Uncertainty Generates Hy-

perbolic Discounting,” Journal of Risk and Uncertainty, 43(3), 169–203.

Epstein, L. G. (2008): “Living with Risk,” Review of Economic Studies, 75, 1121–1141.

Epstein, L. G., and I. Kopylov (2007): “Cold Feet,” Theoretical Economics, 2, 231–259.

Fehr-Duda, H., and T. Epper (2012): “Probability and Risk: Foundations and Economic Implica-

tions of Probability-Dependent Risk Preferences,” Annual Review of Economics, 4, 567–593.

Fingleton, E. (2008): In the Jaws of the Dragon: America’s Fate in the Coming Era of Chinese Hege-

mony. Thomas Dunne Books, St. Martin’s Griffith, NY.

Fox, C. R., and K. E. See (1993): “Belief and Preference in Decision Under Uncertainty,” Thinking:

Psychological Perspectives on Reasoning, Judgment and Decision Making. Edited by David Hardman

and Laura Macchi, John Wiley & Sons, pp. 273–314.

42



Fox, C. R., and A. Tversky (1998): “A Belief-Based Account of Decision Under Uncertainty,”

Management Science, 44(7), 879–895.

Friedman, M., and L. Savage (1948): “The Utility Analysis of Choices Involving Risk,” Journal of

Political Economy, 56(4).

Gneezy, U., A. Kapteyn, and J. Potters (2003): “Evaluation Periods and Asset Prices in a Market

Experiment,” Journal of Finance, LVIII(2), 821–837.

Gneezy, U., and J. Potters (1997): “An Experiment on Risk Taking and Evaluation Periods,”

Quarterly Journal of Economics, 112(2), 631–645.

Goldstein, W., and H. Einhorn (1987): “Expression Theory and the Preference Reversal Phe-

nomena,” Psychological Review, 94, 236–254.

Gonzalez, R., and G. Wu (1999): “On the Shape of the Probability Weighting Function,” Cognitive

Psychology, 38, 129–166.

Grant, S., A. Kajii, and B. Polak (1998): “Intrinsic Preference for Information,” Journal of Eco-

nomic Theory, 83, 233–259.

Gul, F. (1991): “A Theory of Disappointment Aversion,” Econometrica, 59(3), 667–686.

Hagen, O. (1972): “Towards a Positive Theory of Preference under Risk,” In: Allais, M., Hagen,

O. (Ed.), Expected Utility and the Allais Paradox, Dordrecht, Boston, pp. 271–302.

Haigh, M., and J. List (2005): “Do Professional Traders Exhibit Myopic Loss Aversion? An

Experimental Analysis,” Journal of Finance, 60(1), 523–534.

Halevy, Y. (2008): “Strotz Meets Allais: Diminishing Impatience and Certainty Effect,” American

Economic Review, 98(3), 1145–1162.

Hertwig, R., G. Barron, E. Weber, and I. Erev (2004): “Decisions from Experience and the Effect

of Rare Events in Risky Choice,” Psychological Science, 15(8), 534–539.

Huysentruyt, M., and D. Read (2010): “How Do People Value Extended Warranties? Evidence

From Two Field Surveys,” Journal of Risk and Uncertainty, 40, 197–218.

43



Jones, E. E., and C. A. Johnson (1973): “Delay of Consequences and the Riskiness of Decisions,”

Journal of Personality, 41(4), 613–637.

Kagel, J., D. MacDonald, and R. Battalio (1990): “Tests of ’Fanning Out’ of Indifference

Curves: Results from Animal and Human Experiments,” American Economic Review, 80(4),

912–921.

Kahneman, D., and A. Tversky (1979): “Prospect Theory: An Analysis of Decision under Risk,”

Econometrica, 47(2), 263–292.

Karmarkar, U. S. (1979): “Subjectively Weighted Utility and the Allais Paradox,” Organizational

Behavior and Human Performance, 24, 67–72.

Khapko, M. (2015): “Asset Pricing with Dynamically Inconsistent Agents,” Working Paper, Stock-

holm School of Economics.

Kilka, M., and M. Weber (2001): “What Determines the Shape of the Probability Weighting

Function Under Uncertainty,” Management Science, 47, 1712–1726.

Kreps, D., and E. Porteus (1978): “Temporal Resolution of Uncertainty and Dynamic Choice

Theory,” Econometrica, 46(1), 185–200.

Kunreuther, H. (1984): “Causes of Underinsurance against Natural Disasters,” Geneva Papers on

Risk and Insurance, 9(31), 206–220.
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