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A Analytical Details

A.1 Testing For GARP

Varian (1982) provides a convenient algorithm for testing the Generalized Axiom of Revealed Preferences (GARP)

and, in general, we adopt his notation and methods here. Following Burghart (2020), testing GARP in this setting is

computationally less intensive, and more intuitive, if we interpret lower envelope lotteries as two-dimensional demand

vectors, relative to the worst outcome. To do this we transform lower envelope lotteries into two dimensions. Denoting

the lower envelope lottery selected from the ith budget as Li∗, we use the following transformation:

Li∗ =
(
pi∗
60
, pi∗

20
, yi∗

)
→
(
pi∗
60

+ yi∗, pi∗
60

)
=
(
xi∗1 , x

i∗
2

)
= xi∗ (15)

This transformation means that xi∗ can be interpreted as a two-dimensional demand vector, relative to the worst out-

come. Denote as qi the two-dimensional vector of prices that describes the linear budget from which xi∗ was selected.

The starting point for testing GARP is to construct a directly revealed preferred graph. For the 25 budgets in

our experiment, and each participants choices
(
x1∗, . . . , x25∗), we construct a 25 by 25 matrix M (the directly revealed

graph) whose ijth entry is given by

mij =


1 if qi · xi∗ ≥ qi · xj∗

0 otherwise
(16)

We then construct the indirectly revealed preferred graph MT , which is the transitive closure of M . The ijth entry of

the closure is given by

mtij =


1 if m25

ij > 0

0 otherwise
(17)

where m25
ij is the ijth entry of the matrix M25 = MM · · ·M . If mtij = 1 and qj · xj∗ > qj · xi∗ for some i and j (with

xi∗ 6= xj∗) there is a GARP violation.

To calculate Houtman-Maks, conditional on observing at least one violation of GARP, we use a brute force ap-

proach. We check whether all subsets of size 24 are consistent with GARP (using the above algorithm). If no subset of

size 24 is GARP compliant we take all subsets of size 23 and check whether any of these subsets are GARP compliant.

We proceed in such a manner until we find at least one subset of the data that is GARP compliant. The cardinality of

that subset is the Houtman-Maks.
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A.2 Testing For Partial Ignorance Expected Utility

The Partial Ignorance Expected Utility model gives rise to indifference curves that linear and parallel in the uncertainty

triangle. So, given a choice from one budget, the PEU indifference curve structure lets us make predictions about

choices from other budgets. To make predictions, we need to compare the steepness of the ith budget, denoted by the

ratio of its prices
(

q1
q2

)i
, to the steepness of the jth budget, denoted by the ratio of its prices

(
q1
q2

)j
. We say:

1. The jth budget is flatter than the ith budget whenever
(

q1
q2

)j
<
(

q1
q2

)i
2. The jth budget is steeper than the ith budget whenever

(
q1
q2

)j
>
(

q1
q2

)i
We can use these steepness comparisons to make an exhaustive list of predictions. Using xi∗ to denote the choice from

the ith budget:

• Case 1: The choice from the ith budget is the most uncertain alternative available (i.e. the alternative was on the

horizontal or vertical leg of the uncertainty triangle). Denote this “corner” alternative by bxci

xi∗ = bxci →


xj = bxcj when

(
q1
q2

)j
<
(

q1
q2

)i
no prediction when

(
q1
q2

)j
>
(

q1
q2

)i
no prediction when

(
q1
q2

)j
=
(

q1
q2

)i
• Case 2: The choice from ith budget fully-specified lottery (i.e. the alternative selected was on the hypotenuse in

the uncertainty triangle). Denote this “corner” alternative by dxei

xi∗ = dxei →


no prediction when

(
q1
q2

)j
<
(

q1
q2

)i
xj = dxej when

(
q1
q2

)j
>
(

q1
q2

)i
no prediction when

(
q1
q2

)j
=
(

q1
q2

)i
• Case 3: The choice from the ith budget is on the “interior” (i.e. not Case 1 or Case 2). Denote this set of alterna-

tives by [x]i

xi∗ ∈ [x]i →


xj = bxcj when

(
q1
q2

)j
<
(

q1
q2

)i
xj = dxej when

(
q1
q2

)j
>
(

q1
q2

)i
no prediction when

(
q1
q2

)j
=
(

q1
q2

)i
This provides an exhaustive list of predictions under an PEU representation.

Given a set of predictions, it seems reasonable to assess two conditions:

• Condition 1: Predictions about choices are internally consistent.

• Condition 2: Choices are consistent with the predictions.

The first condition requires that choices from distinct budgets do not generate conflicting predictions about the choice

from a third budget (also distinct). The second condition simply requires that choices are consistent with the set of
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(internally consistent) predictions. We say that choices are consistent with an PEU representation if these two conditions

are met.

Algorithmically, we test the Condition 1 by constructing three square matrices, bDc, dDe, and [D], with entries

defined, respectively:

bdcij =


−1 if xi∗ = bxci and

(
q1
q2

)j
<
(

q1
q2

)i
0 otherwise

(18)

ddeij =


+1 if xi∗ = dxei and

(
q1
q2

)j
>
(

q1
q2

)i
0 otherwise

(19)

[d]ij =


−1 if xi∗ ∈ [x]i and

(
q1
q2

)j
<
(

q1
q2

)i
+1 if xi∗ ∈ [x]i and

(
q1
q2

)j
>
(

q1
q2

)i
0 otherwise

(20)

Essentially, these three matrices document whether a choice from the jth budget is predicted to be the most uncertain

alternative available (−1), the fully-specified lottery (+1), or neither (0), based upon some original choice (xi) and

steepness of that original budget
(

q1
q2

)i
.

Because [D] is the only matrix that has both +1 and −1 entries (i.e. only when xi∗ ∈ [x]i can we get predictions of

both bxcj and dxej) we first check it for internal consistency of its predictions. We construct two row vectors, Max[D]

and Min[D], where

Max[D] = [Max{[d]·1, 0},Max{[d]·2, 0}, . . . ,Max{[d]·J , 0}]

Min[D] = [Min{[d]·1, 0},Min{[d]·2, 0}, . . . ,Min{[d]·J , 0}]
(21)

where [d]·j indicates the collection of entries in the jth column of [D]. Notice that for the element-by-element multipli-

cation, Max[d]j ∗Min[d]j ≥ 0, ∀j = 1, . . . , J if and only if predictions are internally consistent in [D].

Conditional on [D] exhibiting internal prediction consistency, all that remains is to verify that all three of the fol-

lowing conditions hold:

Maxddej ·Minbdcj ≥ 0, ∀j = 1, . . . , J

Maxddej ·Min[d]j ≥ 0, ∀j = 1, . . . , J

Max[d]j ·Minbdcj ≥ 0, ∀j = 1, . . . , J

(22)

where
MaxdDe = [Max{dde·1},Max{dde·2}, . . . ,Max{dde·J}]

MinbDc = [Min{bdc·1},Min{bdc·2}, . . . ,Min{bdc·J}]
(23)

If predictions are internally consistent (i.e. choices satisfy condition 1) it is a straightforward exercise to verify that

choices are consistent with predictions (i.e. choices satisfy condition 2). If choices satisfy both condition 1 and condition

2, they pass our test for a Partial Ignorance Expected Utility representation.
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B Classification

B.1 Partial Ignorance Expected Utility Parameter Estimates

B.1.1 Partial Ignorance Expected Utility Transition Probabilities

The weighted graph in Figure 16 depicts transitions of participants between preference types when increasing the total

number of types (C) in the finite mixture model. For a model with n types, the weight of the edges (i.e. the thickness

of the lines) illustrates the fraction of participants moving to the n + 1 types in the subsequent model below. The

proportion of participants assigned to the uncertainty neutral (green) type is remarkably robust for C ≥ 3. Relative to

C = 3, more extreme preference types emerge for the uncertainty averse and uncertainty seeking types when C = 4

and C = 5. The overall proportions of participants in the uncertainty averse and uncertainty seeking categories is,

however, remarkably consistent for C ≥ 3.
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Figure 16: Transition Probabilities For PEU Preference Types Assuming One to Five Types (i.e.
C = 1, . . . , 5)

●

●
●

●

●
●

●

●
●

●

uncertainty seeking uncertainty averse

5

4

3

2

1

0.3 0.4 0.5 0.6 0.7
α

M
od

el
 /

 #
 o

f T
yp

es

●

●
●

●

●
●

●

●
●

●

uncertainty seeking uncertainty averse

5

4

3

2

1

0.3 0.4 0.5 0.6 0.7
α

M
od

el
 /

 #
 o

f T
yp

es

6



B.1.2 Partial Ignorance Expected Utility Posterior Probabilities

Figures 17 and 18 depict histograms of the posterior probabilities for the two models presented in the main text. The

posterior probability that an individual i choosing from the set of lower envelope lotteries Li belongs to type c is defined

as (see Section 3.2.1 for notational definitions):

τic =
πcf(Li;αc, σc)∑C
c=1 πcf(Li;αc, σc)

. (24)

The histograms in Figures 17 and 18 provide a positive impression regarding how well our classification procedure

works. Specifically, the vast majority of participants are clearly assigned to one type because posterior probabilities are

near τ = 1 or τ = 0. This clear assignment to one type or another is an important validation for finite mixture methods

– if assignment to types is unclear, such that posterior probabilities are away from the bounds, then using finite mixture

methods would be inappropriate.
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Figure 17: Posterior Probabilities for PEU
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Figure 18: Posterior Probabilities for PEU
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B.2 β-Partial Ignorance Expected Utility

B.2.1 β-Partial Ignorance Expected Utility Transition Probabilities

Figure 19 shows the transition probabilities when the type count is increased from one to two. The vertex of the

graph labeled by 1 corresponds to the parameter estimate for the homogenous preference model. When allowing for

two types, a fraction of subjects is allocated to the lower type (vertex labeled by 2 at the bottom right), whereas the

remaining subjects are allocated to the upper type (vertex labeled by 2 on the α = 0.50 line). The size of the vertices

corresponds to the posterior probability of being assigned to one of the types. The thicker the edge linking the vertex

labeled by 1 and 2, the higher the transition probability. When increasing from one type to two types there is a split

of the homogeneous preferences (i.e. the ’red 1’) into two qualitatively distinct preference types (i.e. the ’red 2’ and

the ’green 2’). Figure 20 shows the transition probabilities when the type count is increased from two to three. When

increasing from two to three types the ’red 2’ type splits about equally into two ’red 3’ types. The proximal ’blue 3’

types are not qualitatively distinct from the ’green 2’ type.
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Figure 19: Preference Types for β-PEU-types Assuming One to Two Types
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Figure 20: Preference Types for β-PEU-types Assuming Two to Three Types
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B.2.2 β-Partial Ignorance Expected Utility Posterior Probabilities

The posterior probability that an individual i choosing from the set of lower envelope lotteries Li belongs to type c is

defined as:

τic =
πcf(Li;αc, βc, σc)∑C
c=1 πcf(Li;αc, βc, σc)

. (25)

The histograms in Figures 21 show how well our classification procedure works. As with the posteriors for PEU, we

find that the majority of participants are clearly assigned to one type because posterior probabilities are near τ = 1 or

τ = 0.
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Figure 21: Posterior Probabilities for β-PEUFigure 21: Posterior Probabilities for Variant-Linear Group I
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Figure 22: Posterior Probabilities for Variant-Linear Group II
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C Experimental Details

C.1 Choice Situation Details

Table 3 lists normalized prices q1, q2, their ratio q1
q2

, and likelihood l for each budget.

Table 3: Choice Situation (CS) Budget Details

CS q1 q2 l q1
q2

1 0.2 0.8 0.2 0.25
2 0.3 0.7 0.3 0.43
3 0.4 0.6 0.4 0.67
4 0.5 0.5 0.5 1.00
5 0.6 0.4 0.6 1.50

6 0.7 0.3 0.7 2.33
7 0.8 0.2 0.8 4.00
8 0.2 0.6 0.2 0.33
9 0.3 0.5 0.3 0.60
10 0.4 0.4 0.4 1.00

11 0.5 0.3 0.5 1.67
12 0.6 0.2 0.6 3.00
13 0.2 0.6 0.4 0.33
14 0.3 0.5 0.5 0.60
15 0.4 0.4 0.6 1.00

16 0.5 0.3 0.7 1.67
17 0.6 0.2 0.8 3.00
18 0.2 0.4 0.2 0.50
19 0.3 0.3 0.3 1.00
20 0.4 0.2 0.4 2.00

21 0.5 0.1 0.5 5.00
22 0.1 0.5 0.5 0.20
23 0.2 0.4 0.6 0.50
24 0.3 0.3 0.7 1.00
25 0.4 0.2 0.8 2.00
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C.2 Exhaustive List of Each Lower Envelope Lottery

Table 4: An Exhaustive List of the Lower Envelope Lotteries Available in Each Choice Situation

Risky End Uncertain End

CS δ = 1.0 δ = 0.8 δ = 0.6 δ = 0.4 δ = 0.2 δ = 0.0

1 (0.2, 0.8, 0) (0.16, 0.64, 0.2) (0.12, 0.48, 0.4) (0.08, 0.32, 0.6) (0.04, 0.16, 0.8) (0, 0, 1)
2 (0.3, 0.7, 0) (0.24, 0.56, 0.2) (0.18, 0.42, 0.4) (0.12, 0.28, 0.6) (0.06, 0.14, 0.8) (0, 0, 1)
3 (0.4, 0.6, 0) (0.32, 0.48, 0.2) (0.24, 0.36, 0.4) (0.16, 0.24, 0.6) (0.08, 0.12, 0.8) (0, 0, 1)
4 (0.5, 0.5, 0) (0.4, 0.4, 0.2) (0.3, 0.3, 0.4) (0.2, 0.2, 0.6) (0.1, 0.1, 0.8) (0, 0, 1)
5 (0.6, 0.4, 0) (0.48, 0.32, 0.2) (0.36, 0.24, 0.4) (0.24, 0.16, 0.6) (0.12, 0.08, 0.8) (0, 0, 1)

6 (0.7, 0.3, 0) (0.56, 0.24, 0.2) (0.42, 0.18, 0.4) (0.28, 0.12, 0.6) (0.14, 0.06, 0.8) (0, 0, 1)
7 (0.8, 0.2, 0) (0.64, 0.16, 0.2) (0.48, 0.12, 0.4) (0.32, 0.08, 0.6) (0.16, 0.04, 0.8) (0, 0, 1)
8 (0.2, 0.8, 0) (0.16, 0.68, 0.16) (0.12, 0.56, 0.32) (0.08, 0.44, 0.48) (0.04, 0.32, 0.64) (0, 0.2, 0.8)
9 (0.3, 0.7, 0) (0.24, 0.6, 0.16) (0.18, 0.5, 0.32) (0.12, 0.4, 0.48) (0.06, 0.3, 0.64) (0, 0.2, 0.8)

10 (0.4, 0.6, 0) (0.32, 0.52, 0.16) (0.24, 0.44, 0.32) (0.16, 0.36, 0.48) (0.08, 0.28, 0.64) (0, 0.2, 0.8)

11 (0.5, 0.5, 0) (0.4, 0.44, 0.16) (0.3, 0.38, 0.32) (0.2, 0.32, 0.48) (0.1, 0.26, 0.64) (0, 0.2, 0.8)
12 (0.6, 0.4, 0) (0.48, 0.36, 0.16) (0.36, 0.32, 0.32) (0.24, 0.28, 0.48) (0.12, 0.24, 0.64) (0, 0.2, 0.8)
13 (0.4, 0.6, 0) (0.36, 0.48, 0.16) (0.32, 0.36, 0.32) (0.28, 0.24, 0.48) (0.24, 0.12, 0.64) (0.2, 0, 0.8)
14 (0.5, 0.5, 0) (0.44, 0.4, 0.16) (0.38, 0.3, 0.32) (0.32, 0.2, 0.48) (0.26, 0.1, 0.64) (0.2, 0, 0.8)
15 (0.6, 0.4, 0) (0.52, 0.32, 0.16) (0.44, 0.24, 0.32) (0.36, 0.16, 0.48) (0.28, 0.08, 0.64) (0.2, 0, 0.8)

16 (0.7, 0.3, 0) (0.6, 0.24, 0.16) (0.5, 0.18, 0.32) (0.4, 0.12, 0.48) (0.3, 0.06, 0.64) (0.2, 0, 0.8)
17 (0.8, 0.2, 0) (0.68, 0.16, 0.16) (0.56, 0.12, 0.32) (0.44, 0.08, 0.48) (0.32, 0.04, 0.64) (0.2, 0, 0.8)
18 (0.2, 0.8, 0) (0.16, 0.72, 0.12) (0.12, 0.64, 0.24) (0.08, 0.56, 0.36) (0.04, 0.48, 0.48) (0, 0.4, 0.6)
19 (0.3, 0.7, 0) (0.24, 0.64, 0.12) (0.18, 0.58, 0.24) (0.12, 0.52, 0.36) (0.06, 0.46, 0.48) (0, 0.4, 0.6)
20 (0.4, 0.6, 0) (0.32, 0.56, 0.12) (0.24, 0.52, 0.24) (0.16, 0.48, 0.36) (0.08, 0.44, 0.48) (0, 0.4, 0.6)

21 (0.5, 0.5, 0) (0.4, 0.48, 0.12) (0.3, 0.46, 0.24) (0.2, 0.44, 0.36) (0.1, 0.42, 0.48) (0, 0.4, 0.6)
22 (0.5, 0.5, 0) (0.48, 0.4, 0.12) (0.46, 0.3, 0.24) (0.44, 0.2, 0.36) (0.42, 0.1, 0.48) (0.4, 0, 0.6)
23 (0.6, 0.4, 0) (0.56, 0.32, 0.12) (0.52, 0.24, 0.24) (0.48, 0.16, 0.36) (0.44, 0.08, 0.48) (0.4, 0, 0.6)
24 (0.7, 0.3, 0) (0.64, 0.24, 0.12) (0.58, 0.18, 0.24) (0.52, 0.12, 0.36) (0.46, 0.06, 0.48) (0.4, 0, 0.6)
25 (0.8, 0.2, 0) (0.72, 0.16, 0.12) (0.64, 0.12, 0.24) (0.56, 0.08, 0.36) (0.48, 0.04, 0.48) (0.4, 0, 0.6)

Each lower envelope lottery listed above can be constructed as the convex combination δR+ (1− δ)Y , where
R represents the lower envelope lottery at the “Risky End” of the budget, and Y represents the lower envelope
lottery at the “Uncertain End” of the budget.

15


	Introduction
	Experimental Design And Methods
	Elicitation Software
	Resolution of Uncertainty
	Making Draws From The Urn

	Analyzing Choices
	Assessing the Generalized Axiom of Revealed Preference (GARP)
	Assessing The Partial Ignorance Expected Utility Maximization Hypothesis
	Estimating Partial Ignorance Expected Utility Parameters
	Estimation Results: Examining Uncertainty Attitude Types

	Examining Why PEU Maximization Failed
	The -Partial Ignorance Expected Utility Model
	Estimating -Partial Ignorance Expected Utility Parameters
	Estimation Results: Examining -Partial Ignorance Expected Utility Preference Types


	Related Literature
	Discussion and Conclusion
	Analytical Details
	Testing For GARP
	Testing For Partial Ignorance Expected Utility

	Classification
	Partial Ignorance Expected Utility Parameter Estimates
	Partial Ignorance Expected Utility Transition Probabilities
	Partial Ignorance Expected Utility Posterior Probabilities

	-Partial Ignorance Expected Utility
	-Partial Ignorance Expected Utility Transition Probabilities
	-Partial Ignorance Expected Utility Posterior Probabilities


	Experimental Details
	Choice Situation Details
	Exhaustive List of Each Lower Envelope Lottery




