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S1. ESTIMATION OF THE FINITE MIXTURE MODEL

AS IT IS GENERALLY THE CASE in finite mixture models, direct maximization of
the log likelihood function

lnL(Ψ ; ce� G)=
N∑

i=1

ln
C∑

c=1

πcf (cei� G;θc� ξi)

may encounter several problems, even if it is, in principle, feasible (for a gen-
eral treatise, see, for example, McLachlan and Peel (2000)). First, the highly
nonlinear form of the log likelihood causes the optimization algorithm to be
rather slow or even incapable of finding the maximum. Second, the likelihood
of a finite mixture model is often multimodal and therefore we have no guar-
anty that a standard optimization routine will converge toward the global max-
imum rather than to one of the local maxima.

However, if individual group membership were observable and indicated
by tic ∈ {0�1}, the individual contribution to the likelihood function would be
given by

�̃(Ψi; cei� G� ti)=
C∏

c=1

[πcf (cei� G;θc� ξi)]tic �

By using the above formulation and taking logarithms, the complete-data log
likelihood function

ln L̃(Ψ ; ce� G� t)=
N∑

i=1

C∑

c=1

tic[lnπc + ln f (cei� G;θc� ξi)]

would follow directly. As relative group sizes sum up to 1, their maximum like-
lihood estimates, π̂c = 1/N

∑N

i=1 tic , would be given analytically by the rela-
tive number of individuals in the respective group. Furthermore, the maximum
likelihood estimates of the group-specific parameters could be obtained sepa-
rately in each group by numerically maximizing the corresponding joint density
function, which would simplify the optimization problem considerably.

The EM algorithm proceeds iteratively in two steps, E and M, while it treats
the unobservable tic as missing data. In the E step of the (k + 1)th iteration,
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the expectation of the complete-data log likelihood L̃, given the actual fit of
the data Ψ(k), is computed. This yields, according to Bayes’ law, the posterior
probabilities of individual group membership

τic
(
cei� G;Ψ(k)

i

) = π(k)
c f (cei� G;θ(k)

c � ξ(k)
i )

C∑

m=1

π(k)
m f (cei� G;θ(k)

m �ξ(k)
i )

�

which replace the unknown indicators of individual group membership, tic .
Given τic(cei� G;Ψ(k)

i ), the complete-data log likelihood, L̃, is maximized in
the following M step, which yields the updates of the model parameters:

π(k+1)
c = 1

N

N∑

i=1

τic
(
cei� G;Ψ(k)

i

)

and
(
θ(k+1)

1 � � � � � θ(k+1)
C � ξ(k+1)

1 � � � � � ξ(k+1)
N

)

= arg max
θ1�����θC �ξ1�����ξN

N∑

i=1

C∑

m=1

τim
(
cei� G;Ψ(k)

i

)
ln f

(
cei� G;θ(k)

m �ξ(k)
i

)
�

As Dempster, Laird, and Rubin (1977) showed, the likelihood never decreases
from one iteration to the next, that is, L(Ψ(k+1); ce� G)≥L(Ψ(k); ce� G), which
makes the EM algorithm converge monotonically toward the nearest maxi-
mum of the likelihood function regardless of whether this maximum is global
or just local. In the Zurich 2003 data set, we therefore needed to apply a sto-
chastic extension, the simulated annealing expectation maximization (SAEM)
algorithm proposed by Celeux, Chauveau, and Diebolt (2001), to overcome the
EM algorithm’s tendency to converge toward local maxima. In each iteration,
there is a nonzero probability that the SAEM algorithm leaves the current op-
timization path and starts over in a different region of the likelihood function,
which results in much higher chances of finding the global maximum. But this
robustness against multimodality of the objective function comes at the cost of
much higher computational demands.

As the EM algorithm is computationally highly demanding, even in its basic
form, and tends to become tediously slow close to convergence, our estimation
routine relies on a hybrid estimation algorithm (Render and Walker (1984)): It
first uses either the EM or the SAEM algorithm and takes advantage of their
robustness before it switches to the direct maximization of the log likelihood
by the much faster Broyden–Fletcher–Goldfarb–Shanno algorithm. The esti-
mation routine in this form turned out to be efficient and robust as it reliably
converged toward the same maximum likelihood estimates regardless of the
randomly chosen start values.
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S2. AGGREGATE BEHAVIOR

TABLE S.I

SINGLE-COMPONENT MODELSa

Gains Losses

Parameters ZH 03 ZH 06 BJ 05 ZH 03 ZH 06 BJ 05

α/β 1.041 0.916 0.443 1.077 1.093 1.131
(0.021) (0.021) (0.116) (0.025) (0.036) (0.123)

γ 0.482 0.519 0.318 0.487 0.579 0.383
(0.010) (0.017) (0.016) (0.012) (0.027) (0.015)

δ 0.869 0.886 1.296 1.030 1.039 0.944
(0.020) (0.022) (0.081) (0.026) (0.033) (0.062)

lnL 19,563 10,671 9550
Parameters 364 242 308
Individuals 179 118 151
Observations 8906 4669 4225

aStandard errors (in parentheses) are based on the bootstrap method with 4000 replications. ZH stands for Zurich;
BJ stands for Beijing.

S3. CLASSIFICATION AND DEMOGRAPHICS

TABLE S.II

SUMMARY STATISTICS FOR DEMOGRAPHIC VARIABLESa

Mean Std. Err.

Zurich 03
Individuals 179

Female 0.430 0.037
Semester 3.676 0.159
Highincome 0.162 0.028

Zurich 06
Individuals 118

Female 0.441 0.046
Semester 3.551 0.240
Highincome 0.051 0.020

Beijing 05
Individuals 151

Female 0.483 0.041
Semester 2.238 0.133
Highincome 0.146 0.029

aThe variable highincome equals 1 if disposable income per month
is above 1500 swiss francs and 1000 yuan, respectively. Thresholds
chosen by distributional considerations and relative students’ hourly
wages.
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TABLE S.III

CLASSIFICATION OF BEHAVIOR WITH C = 3, POOLED: MENa

Gains Losses

EUT CPT-I CPT-II EUT CPT-I CPT-II

π 0.182 0.333 0.485
(0.014) (0.022) (0.025)

α 0.981 0.925 0.988 β 1.018 1.280 1.066
(0.015) (0.035) (0.028) (0.028) (0.099) (0.082)

γ 0.963 0.260 0.505 γ 0.970 0.285 0.543
(0.044) (0.117) (0.108) (0.040) (0.124) (0.117)

δ 0.908 0.896 0.993 δ 1.078 0.963 0.956
(0.016) (0.052) (0.046) (0.023) (0.033) (0.026)

lnL 24,114
Parameters 512
Individuals 246
Observations 9874

aStandard errors (in parentheses) are based on the bootstrap method with 2000 replications. Parameters include
estimates of ξi for domain- and individual-specific error variances.

TABLE S.IV

CLASSIFICATION OF BEHAVIOR WITH C = 3, POOLED: WOMENa

Gains Losses

EUT CPT-I CPT-II EUT CPT-I CPT-II

π 0.240 0.369 0.391
(0.038) (0.028) (0.031)

α 0.936 0.967 0.914 β 1.159 1.186 1.296
(0.032) (0.049) (0.045) (0.069) (0.081) (0.088)

γ 0.780 0.317 0.281 γ 0.714 0.327 0.312
(0.092) (0.049) (0.031) (0.102) (0.043) (0.027)

δ 0.925 1.153 0.686 δ 0.960 0.748 1.264
(0.045) (0.254) (0.216) (0.069) (0.305) (0.236)

lnL 18,213
Parameters 424
Individuals 202
Observations 7926

aStandard errors (in parentheses) are based on the bootstrap method with 2000 replications. Parameters include
estimates of ξi for domain- and individual-specific error variances.
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TABLE S.V

EFFECTS OF SOCIO-ECONOMIC VARIABLES ON PARAMETERSa

Gains Losses

Parameters ZH 03 ZH 06 BJ 05 ZH 03 ZH 06 BJ 05

α/β
Constant 1�101∗∗ 0�935∗∗ 0�538∗∗ 1�075∗∗ 1�049∗∗ 1�553∗∗

(0�051) (0�039) (0�189) (0�061) (0�047) (0�373)

Female −0�008 −0�041 −0�424 0�103 0�136 −0�347
(0�042) (0�044) (0�325) (0�069) (0�069) (0�351)

Semester −0�016 0�002 0�096 −0�009 −0�006 −0�095
(0�012) (0�006) (0�091) (0�013) (0�008) (0�106)

Highincome −0�024 −0�049 −0�436 0�078 0�064 −0�450
(0�059) (0�112) (0�251) (0�085) (0�126) (0�387)

γ
Constant 0�434∗∗ 0�562∗∗ 0�374∗∗ 0�472∗∗ 0�746∗∗ 0�454∗∗

(0�037) (0�057) (0�025) (0�037) (0�063) (0�035)

Female −0.143∗∗ −0.186∗∗ −0.113∗∗ −0.149∗∗ −0.324∗∗ −0.112∗∗

(0�022) (0�057) (0�031) (0�026) (0�054) (0�036)

Semester 0�031∗∗ 0�023 0�001 0�019 0�011∗ 0�001
(0�012) (0�010) (0�009) (0�011) (0�005) (0�015)

Highincome 0�204∗∗ −0�110 −0�007 0�002 −0�051 −0�046
(0�079) (0�098) (0�034) (0�071) (0�070) (0�033)

δ
Constant 0�848∗∗ 0�945∗∗ 1�295∗∗ 1�008∗∗ 0�990∗∗ 0�754∗∗

(0�051) (0�042) (0�125) (0�068) (0�047) (0�176)

Female −0�147∗∗ −0�134∗∗ 0�195 0�091 0�021 0�186
(0�041) (0�045) (0�227) (0�074) (0�065) (0�172)

Semester 0�021 −0�001 −0�062 −0�001 0�008 0�038
(0�013) (0�006) (0�063) (0�014) (0�006) (0�053)

Highincome −0�072 −0�064 0�214 −0�059 −0�016 0�227
(0�060) (0�123) (0�185) (0�084) (0�156) (0�238)

lnL 19,755 10,816 9601
Parameters 382 260 326
Observations 8906 4669 4225

aStandard errors (in parentheses) are based on the bootstrap method with 4000 replications.
∗∗Significant at 1% level; ∗significant at 5% level. ZH stands for Zurich, BJ stands for Beijing.
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